
-
Previous Article
Uniform stabilization of 1-D Schrödinger equation with internal difference-type control
- DCDS-B Home
- This Issue
-
Next Article
Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant
Qualitative analysis of a simple tumor-immune system with time delay of tumor action
1. | Department of Mathematics, Shaanxi University of Science and Technology, Xi'an, 710021, China |
2. | Department of Immunology, Xi'an Medical University, Xi'an 710021, China |
3. | Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China, Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA |
In this paper, we propose a simple tumor-immune system model with time delay of tumor action, where two kinds of effects of the tumor cells (i.e. stimulation and neutralization) on the effector cells are considered. The local stability of the model is obtained by analyzing the characteristic equations of the model at the corresponding equilibria, the sufficient conditions on the global stability are found by applying the Fluctuation Lemma and constructing the different convergent sequences. The obtained results show that, compared to the results for the model without time delay, the time delay of tumor action can affect the stability of tumor equilibrium of the model as the stimulation effect of the tumor cells is strong enough, while the delay is harmless for the stability of tumor equilibrium under the neutralization of tumor cells. For the appropriate neutralization of tumor cells on effector cells, the bistability of the tumor free equilibrium and the stronger tumor equilibrium can appear. In the case of stimulation of tumor cells, the sufficiently large time delay can lead to the appearance of a stable periodic solution by Hopf bifurcation, and the numerical simulation illustrates that the amplitude of the periodic orbit increases with time delay. We also discuss the dependence of the tumor equilibrium and the time delay threshold, determining the stability of the tumor equilibrium, on tumor action. The related conditions determining dynamics of the model are expressed by certain formulae with biological meanings.
References:
[1] |
P. Bi and S. Ruan,
Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Appl. Dyn. Syst., 12 (2013), 1847-1888.
doi: 10.1137/120887898. |
[2] |
P. Bi and H. Xiao,
Hopf bifurcation for tumor-immune competition systems with delay, Electron. J. Diff. Equ., 2014 (2014), 1-13.
|
[3] |
P. Bi and H. Xiao,
Bifurcations of tumor-immune competition systems with delay, Abstract and Applied Analysis, 2014 (2014), 1-12.
doi: 10.1155/2014/723159. |
[4] |
N. Buric and T. Dragana,
Dynamics of delay differential equations modeling immunology of tumor growth, Chaos Solitons Fractals, 13 (2002), 645-655.
doi: 10.1016/S0960-0779(00)00275-7. |
[5] |
A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi,
Delay-induced oscillatory dynamics of tumour immune system interaction, Math. Comput. Model., 51 (2010), 572-591.
doi: 10.1016/j.mcm.2009.11.005. |
[6] |
Y. Dong, G. Huang, R. Miyazaki and Y. Takeuchi,
Dynamics in a tumor immune system with time delays, Appl. Math. Comput., 252 (2015), 99-113.
doi: 10.1016/j.amc.2014.11.096. |
[7] |
M. Galach,
Dynamics of the tumor-immune system competition–the effect of time delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395-406.
|
[8] |
J. Gukenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[9] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[10] |
W. M. Hirsch, H. Hanisch and J.-P. Gabriel,
Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607. |
[11] |
P. Johansen, T. Storni, L. Rettig and et al.,
Antigen kinetics determines immune reactivity, Proc. Natl. Acad. Sci., 105 (2008), 5189-5194.
doi: 10.1073/pnas.0706296105. |
[12] |
S. Khajanchi and S. Banerjee,
Stability and bifurcation ananlysis of delay induced tumor immune interactional model, Appl. Math. Comput., 248 (2014), 652-671.
doi: 10.1016/j.amc.2014.10.009. |
[13] |
S. Khajanchi and J. J. Nieto,
Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340 (2019), 180-205.
doi: 10.1016/j.amc.2018.08.018. |
[14] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. Google Scholar |
[15] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson,
Nonlinear dynamics of immunogenic tumors:Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.
doi: 10.1007/BF02460644. |
[16] |
N. Nishida and M. Kudo,
Immunological microenvironment of hepatocellular carcinoma and its clinical implication, Oncology, 92 (2017), 40-49.
doi: 10.1159/000451015. |
[17] |
J. Prieto, I. Melero and B. Sangro,
Immunological landscape and immunotherapy of hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 12 (2015), 681-700.
doi: 10.1038/nrgastro.2015.173. |
[18] |
F. A. Rihan, M. Safan, M. A. Abdeen and D. A. Rahman,
Qualitative and computational analysis of a mathematical model for tumor-immune interactions, Journal of Applied Mathematics, 2012 (2012), 1-19.
doi: 10.1155/2012/475720. |
[19] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[20] |
M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270–294.
doi: 10.1007/s00285-003-0211-0. |
[21] |
R. Xu and Z. Ma,
Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dyn., 61 (2010), 229-239.
doi: 10.1007/s11071-009-9644-3. |
[22] |
R. Yafia,
Hopf bifurcation analysis and numerical simulations in an ODE model of the immune system with positive immune response, Nonl. Anal.: Real World Appl., 8 (2007), 1359-1369.
doi: 10.1016/j.nonrwa.2006.08.003. |
[23] |
R. Yafia,
Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693-1703.
doi: 10.1137/060657947. |
[24] |
R. Yafia, Hopf bifurcation in a delayed model for tumor-immune system competition with negative immune response, Discrete Dynamics in Nature and Society, 2006 (2006), Art. ID 95296, 9 pp.
doi: 10.1155/DDNS/2006/95296. |
[25] |
R. Yafia, Stability of limit cycle in a delayed model for tumor immune system competition with negative immune response, Discrete Dynamics in Nature and Society, 2006 (2006), Art. ID 58463, 13 pp.
doi: 10.1155/DDNS/2006/58463. |
show all references
References:
[1] |
P. Bi and S. Ruan,
Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Appl. Dyn. Syst., 12 (2013), 1847-1888.
doi: 10.1137/120887898. |
[2] |
P. Bi and H. Xiao,
Hopf bifurcation for tumor-immune competition systems with delay, Electron. J. Diff. Equ., 2014 (2014), 1-13.
|
[3] |
P. Bi and H. Xiao,
Bifurcations of tumor-immune competition systems with delay, Abstract and Applied Analysis, 2014 (2014), 1-12.
doi: 10.1155/2014/723159. |
[4] |
N. Buric and T. Dragana,
Dynamics of delay differential equations modeling immunology of tumor growth, Chaos Solitons Fractals, 13 (2002), 645-655.
doi: 10.1016/S0960-0779(00)00275-7. |
[5] |
A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi,
Delay-induced oscillatory dynamics of tumour immune system interaction, Math. Comput. Model., 51 (2010), 572-591.
doi: 10.1016/j.mcm.2009.11.005. |
[6] |
Y. Dong, G. Huang, R. Miyazaki and Y. Takeuchi,
Dynamics in a tumor immune system with time delays, Appl. Math. Comput., 252 (2015), 99-113.
doi: 10.1016/j.amc.2014.11.096. |
[7] |
M. Galach,
Dynamics of the tumor-immune system competition–the effect of time delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395-406.
|
[8] |
J. Gukenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[9] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[10] |
W. M. Hirsch, H. Hanisch and J.-P. Gabriel,
Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607. |
[11] |
P. Johansen, T. Storni, L. Rettig and et al.,
Antigen kinetics determines immune reactivity, Proc. Natl. Acad. Sci., 105 (2008), 5189-5194.
doi: 10.1073/pnas.0706296105. |
[12] |
S. Khajanchi and S. Banerjee,
Stability and bifurcation ananlysis of delay induced tumor immune interactional model, Appl. Math. Comput., 248 (2014), 652-671.
doi: 10.1016/j.amc.2014.10.009. |
[13] |
S. Khajanchi and J. J. Nieto,
Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340 (2019), 180-205.
doi: 10.1016/j.amc.2018.08.018. |
[14] | Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. Google Scholar |
[15] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson,
Nonlinear dynamics of immunogenic tumors:Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.
doi: 10.1007/BF02460644. |
[16] |
N. Nishida and M. Kudo,
Immunological microenvironment of hepatocellular carcinoma and its clinical implication, Oncology, 92 (2017), 40-49.
doi: 10.1159/000451015. |
[17] |
J. Prieto, I. Melero and B. Sangro,
Immunological landscape and immunotherapy of hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 12 (2015), 681-700.
doi: 10.1038/nrgastro.2015.173. |
[18] |
F. A. Rihan, M. Safan, M. A. Abdeen and D. A. Rahman,
Qualitative and computational analysis of a mathematical model for tumor-immune interactions, Journal of Applied Mathematics, 2012 (2012), 1-19.
doi: 10.1155/2012/475720. |
[19] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[20] |
M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270–294.
doi: 10.1007/s00285-003-0211-0. |
[21] |
R. Xu and Z. Ma,
Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dyn., 61 (2010), 229-239.
doi: 10.1007/s11071-009-9644-3. |
[22] |
R. Yafia,
Hopf bifurcation analysis and numerical simulations in an ODE model of the immune system with positive immune response, Nonl. Anal.: Real World Appl., 8 (2007), 1359-1369.
doi: 10.1016/j.nonrwa.2006.08.003. |
[23] |
R. Yafia,
Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693-1703.
doi: 10.1137/060657947. |
[24] |
R. Yafia, Hopf bifurcation in a delayed model for tumor-immune system competition with negative immune response, Discrete Dynamics in Nature and Society, 2006 (2006), Art. ID 95296, 9 pp.
doi: 10.1155/DDNS/2006/95296. |
[25] |
R. Yafia, Stability of limit cycle in a delayed model for tumor immune system competition with negative immune response, Discrete Dynamics in Nature and Society, 2006 (2006), Art. ID 58463, 13 pp.
doi: 10.1155/DDNS/2006/58463. |




Case | Conditions | ||||
C1 | US | GAS-1 | — | — | |
C2 | US | GAS-1 | — | — | |
C3 | US | GAS-1 | — | — | |
C4 | LAS | LAS | US | — | |
C5 | LAS | — | — | SN | |
C6 | GAS-2 | — | — | — | |
C7 | GAS-2 | — | — | — |
Case | Conditions | ||||
C1 | US | GAS-1 | — | — | |
C2 | US | GAS-1 | — | — | |
C3 | US | GAS-1 | — | — | |
C4 | LAS | LAS | US | — | |
C5 | LAS | — | — | SN | |
C6 | GAS-2 | — | — | — | |
C7 | GAS-2 | — | — | — |
[1] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[2] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[3] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[4] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[5] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[6] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[7] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[8] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[9] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[10] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[11] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[12] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[13] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[14] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[15] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[16] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[17] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[18] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[19] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[20] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]