
-
Previous Article
Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps
- DCDS-B Home
- This Issue
-
Next Article
Codimension one and two bifurcations in Cattaneo-Christov heat flux model
Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem
Department of Mathematics, Georgia College & State University, Milledgeville, GA 31061, USA |
We consider an ecological model consisting of two species of predators competing for their common prey with explicit interference competition. With a proper rescaling, the model is portrayed as a singularly perturbed system with one fast (prey dynamics) and two slow variables (dynamics of the predators). The model exhibits a variety of rich and interesting dynamics, including, but not limited to mixed-mode oscillations (MMOs), featuring concatenation of small and large amplitude oscillations, relaxation oscillations and bistability between a semi-trivial equilibrium state and a coexistent oscillatory state. More interestingly, in a neighborhood of singular Hopf bifurcation, long lasting transient dynamics in the form of chaotic MMOs or relaxation oscillations are observed as the system approaches the periodic attractor born out of supercritical Hopf bifurcation or a semi-trivial equilibrium state respectively. The transient dynamics could persist for hundreds or thousands of generations before the ecosystem experiences a regime shift. The time series of population cycles with different types of irregular oscillations arising in this model stem from a biological realistic feature, namely, by the variation in the intraspecific competition amongst the predators. To explain these oscillations, we use bifurcation analysis and methods from geometric singular perturbation theory. The numerical continuation study reveals the rich bifurcation structure in the system, including the existence of codimension-two bifurcations such as fold-Hopf and generalized Hopf bifurcations.
References:
[1] |
S. Ai and S. Sadhu,
The entry-exit theorem and relaxation oscillations in slow-fast planar systems, Journal of Diff. Eq., 268 (2020), 7220-7249.
doi: 10.1016/j.jde.2019.11.067. |
[2] |
C. Asaro and L. A. Chamberlin, Outbreak History $(1953-2014)$ of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria dispar L.) and Fall Cankerworm (Alsophila pometaria Harris), American Entomologist, (2015) 174–185. Google Scholar |
[3] |
T. R. Baumgartner, A. Soutar and V. Bartrina, Reconstruction of the history of Pacific sardine and Northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California, CalCOFl Rep., Vol. 33, 1992. Google Scholar |
[4] |
B. Braaksma,
Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.
doi: 10.1007/s003329900058. |
[5] |
M. Brøns, T. J. Kaper and H. G. Rotstein, Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis, Chaos, 18 (2008), 015101.
doi: 10.1063/1.2903177. |
[6] |
M. Brøns and R. Kaasen,
Canards and mixed-mode oscillations in a forest pest model, Theoretical Population Biology, 77 (2010), 238-242.
doi: 10.1016/j.tpb.2010.02.003. |
[7] |
M. Brøns, M. Krupa and M. Wechselberger,
Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.
|
[8] |
M. Casimir, History of outbreaks of the Australian plague locust, Chortoicetes terminifera (Walk.), between $1933$ and $1959$ and analyses of the influence of rainfall in these outbreaks, Aust. J. Agric. Res., 13 (1962), 670-700. Google Scholar |
[9] |
R. Curtu and J. Rubin,
Interaction of canard and singular Hopf mechanisms in a neural model, SIAM J. Appl. Dyn Syst., 10 (2011), 1443-1479.
doi: 10.1137/110823171. |
[10] |
S. L. T. de Souza, I. L. Caldas, R. L. Viana and J. M. Balthazar,
Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solitons & Fractals, 21 (2004), 763-772.
doi: 10.1016/j.chaos.2003.12.096. |
[11] |
B. Deng,
Food chain chaos due to junction-fold point, Chaos, 11 (2001), 514-525.
doi: 10.1063/1.1396340. |
[12] |
B. Deng and G. Hines,
Food chain chaos due to Shilnikovs orbit, Chaos, 12 (2002), 533-538.
doi: 10.1063/1.1482255. |
[13] |
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger,
Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.
doi: 10.1137/100791233. |
[14] |
B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, 2002.
doi: 10.1137/1.9780898718195. |
[15] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[16] |
J. Guckenheimer,
Singular Hopf bifurcation in systems with two slow variables, SIAM Journal of Applied Dynamical Systems, 7 (2008), 1355-1377.
doi: 10.1137/080718528. |
[17] |
J. Guckenheimer and P. Meerkamp,
Unfoldings of singular hopf bifurcation, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359.
doi: 10.1137/11083678X. |
[18] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[19] |
J. Guckenheimer and I. Lizarraga, Shilnikov homoclinic bifurcation of mixed-mode oscillations, SIAM J. Appl. Dyn. Syst., 14 (2015), 764-786.
doi: 10.1137/140972007. |
[20] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[21] |
A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y-C. Lai, A. Morozov, S. Petrovskii, K. Scranton and M. L. Zeeman, Transient phenomena in ecology, Science, 07 (2018). Google Scholar |
[22] |
F. M. Hilker and H. Malchow,
Strange periodic attractors in a prey-predator system with infected prey, Math. Pop. Studies, 13 (2006), 119-134.
doi: 10.1080/08898480600788568. |
[23] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[24] |
M. T. M. Koper,
Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol- Duffing model with a cross-shaped phase diagram, Physica D, 80 (1995), 72-74.
doi: 10.1016/0167-2789(95)90061-6. |
[25] |
E. Korpim$\ddot{\mathrm{a}}$ki, P. R. Brown, J. Jacob and R. P. Pech, The puzzles of population cycles and outbreaks of small mammals solved?, BioScience, 54 (2004), 1071–1079. https://academic.oup.com/bioscience/article/54/12/1071/329290. Google Scholar |
[26] |
M. Krupa, N. Popović and N. Kopell,
Mixed-mode oscillations in three time-scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7 (2008), 361-420.
doi: 10.1137/070688912. |
[27] |
M. Krupa and M. Wechselberger,
Local analysis near a folded saddle-node singularity, J. of Differential Equations, 248 (2010), 2841-2888.
doi: 10.1016/j.jde.2010.02.006. |
[28] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[29] |
M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators, Chaos, 19 (2009), 043121, 10 pp.
doi: 10.1063/1.3270262. |
[30] |
Y. A. Kuznetsov, Elements of Applied BifurcationTheory, Springer-Verlag, New York, 1998. |
[31] |
B. Letson, J. Rubin and T. Vo,
Analysis of interacting local oscillation mechanisms in three-timescale systems, SIAM J. Appl. Math., 77 (2017), 1020-1046.
doi: 10.1137/16M1088429. |
[32] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Diff. Equ., 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[33] |
J. Maselko and H. L. Swinney,
Complex periodic oscillation and Farey arithmetic in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 85 (1986), 6430-6441.
doi: 10.1063/1.451473. |
[34] |
R. McGehee and R. A. Armstrong,
Some mathematical problems concerning the ecological principle of competitive exclusion, J. Diff. Eq., 23 (1977), 30-52.
doi: 10.1016/0022-0396(77)90135-8. |
[35] |
A. Y. Morozov, M. Banerjee and S. V. Petrovskii, Long term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, J. Theo. Biol., 396 (2016), 116-124. Google Scholar |
[36] |
A. Morozov, K. Abbott, K. Cuddington, T. Francisd, G. Gellnere, A. Hastings, Y.-C. Laig, S. Petrovskii, K. Scranton and M. LouZeeman, Long transients in ecology: Theory and applications, Physics of Life Reviews, 32 (2020, ) 1–40.
doi: 10.1016/j.plrev.2019.09.004. |
[37] |
J. Mujica, B. Krauskopf and H. M. Osinga,
Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018), 1395-1431.
doi: 10.1137/17M1133452. |
[38] |
S. Muratori and S. Rinaldi,
Remarks on competitive coexistence, SIAM J. Applied Math., 49 (1989), 1462-1472.
doi: 10.1137/0149088. |
[39] |
A. B. Peet, P. A. Deutsch and E. Peacock-Lpez,
Complex dynamics in a three-level trophic system with intraspecies interaction, J. Theor. Biol., 232 (2005), 491-503.
doi: 10.1016/j.jtbi.2004.08.028. |
[40] |
J.-C. Poggiale, C. Aldebert, B. Girardot and B. W. Kooi,
Analysis of a predatorprey model with specific time scales: a geometrical approach proving the occurrence of canard solutions, J. of Math. Bio., 80 (2020), 39-60.
doi: 10.1007/s00285-019-01337-4. |
[41] |
L. C. Pontryagin, Asymptotic behavior of solutions of systems of differential equations with a small parameter in the derivatives of highest order, Izv. Akad. Nauk. SSSR Ser. Math., 21 (1957), 605–626 (in Russian). |
[42] |
S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecological Modelling, 61 (1992), 287-308. Google Scholar |
[43] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[44] |
H. G. Rotstein, M. Wechselberger and N. Kopell,
Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J Applied Dynamical Systems, 7 (2008), 1582-1611.
doi: 10.1137/070699093. |
[45] |
S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis,
Coexistence in competition models with density-dependent mortality, C. R. Biologies, 330 (2007), 845-854.
doi: 10.1016/j.crvi.2007.10.004. |
[46] |
S. Sadhu, Stochasticity induced mixed-mode oscillations and distribution of recurrent outbreaks in an ecosystem, Chaos, 27(2017), 3, 033108.
doi: 10.1063/1.4977553. |
[47] |
S. Sadhu and S. Chakraborty Thakur,
Uncertainty and predictability in population dynamics of a bitrophic ecological model: Mixed-mode oscillations, bistability and sensitivity to parameters, Ecological Complexity, 32 (2017), 196-208.
doi: 10.1016/j.ecocom.2016.08.007. |
[48] |
S. Sadhu and C. Kuehn, Stochastic mixed-mode oscillations in a three-species predator-prey model, Chaos, 28 (2018), 3, 033606.
doi: 10.1063/1.4994830. |
[49] |
S. Sadhu, Analysis of long term transient dynamics near singular Hopf bifurcation in a two-timescale ecosystem, submitted. Google Scholar |
[50] |
S. Schecter,
Persistent unstable equilibria and closed orbits of a singularly perturbed equation, J. Diff. Eqns., 60 (1985), 131-141.
doi: 10.1016/0022-0396(85)90124-X. |
[51] |
M. Scheffer and S. R. Carpenter,
Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends in Ecol. and Evol., 18 (2003), 648-656.
doi: 10.1016/j.tree.2003.09.002. |
[52] |
M. Scheffer, Critical Transitions in Nature and Society, 16 Princeton University Press (2009). Google Scholar |
[53] |
P. Szmolyan and M. Wechselberger,
Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453.
doi: 10.1006/jdeq.2001.4001. |
[54] |
M. Wechselberger,
Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.
doi: 10.1137/030601995. |
[55] |
D. E. Wright, Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model, Aust. J. Ecol., 12 (1987), 423-437. Google Scholar |
show all references
References:
[1] |
S. Ai and S. Sadhu,
The entry-exit theorem and relaxation oscillations in slow-fast planar systems, Journal of Diff. Eq., 268 (2020), 7220-7249.
doi: 10.1016/j.jde.2019.11.067. |
[2] |
C. Asaro and L. A. Chamberlin, Outbreak History $(1953-2014)$ of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria dispar L.) and Fall Cankerworm (Alsophila pometaria Harris), American Entomologist, (2015) 174–185. Google Scholar |
[3] |
T. R. Baumgartner, A. Soutar and V. Bartrina, Reconstruction of the history of Pacific sardine and Northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California, CalCOFl Rep., Vol. 33, 1992. Google Scholar |
[4] |
B. Braaksma,
Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.
doi: 10.1007/s003329900058. |
[5] |
M. Brøns, T. J. Kaper and H. G. Rotstein, Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis, Chaos, 18 (2008), 015101.
doi: 10.1063/1.2903177. |
[6] |
M. Brøns and R. Kaasen,
Canards and mixed-mode oscillations in a forest pest model, Theoretical Population Biology, 77 (2010), 238-242.
doi: 10.1016/j.tpb.2010.02.003. |
[7] |
M. Brøns, M. Krupa and M. Wechselberger,
Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.
|
[8] |
M. Casimir, History of outbreaks of the Australian plague locust, Chortoicetes terminifera (Walk.), between $1933$ and $1959$ and analyses of the influence of rainfall in these outbreaks, Aust. J. Agric. Res., 13 (1962), 670-700. Google Scholar |
[9] |
R. Curtu and J. Rubin,
Interaction of canard and singular Hopf mechanisms in a neural model, SIAM J. Appl. Dyn Syst., 10 (2011), 1443-1479.
doi: 10.1137/110823171. |
[10] |
S. L. T. de Souza, I. L. Caldas, R. L. Viana and J. M. Balthazar,
Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solitons & Fractals, 21 (2004), 763-772.
doi: 10.1016/j.chaos.2003.12.096. |
[11] |
B. Deng,
Food chain chaos due to junction-fold point, Chaos, 11 (2001), 514-525.
doi: 10.1063/1.1396340. |
[12] |
B. Deng and G. Hines,
Food chain chaos due to Shilnikovs orbit, Chaos, 12 (2002), 533-538.
doi: 10.1063/1.1482255. |
[13] |
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger,
Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.
doi: 10.1137/100791233. |
[14] |
B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, 2002.
doi: 10.1137/1.9780898718195. |
[15] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[16] |
J. Guckenheimer,
Singular Hopf bifurcation in systems with two slow variables, SIAM Journal of Applied Dynamical Systems, 7 (2008), 1355-1377.
doi: 10.1137/080718528. |
[17] |
J. Guckenheimer and P. Meerkamp,
Unfoldings of singular hopf bifurcation, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359.
doi: 10.1137/11083678X. |
[18] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[19] |
J. Guckenheimer and I. Lizarraga, Shilnikov homoclinic bifurcation of mixed-mode oscillations, SIAM J. Appl. Dyn. Syst., 14 (2015), 764-786.
doi: 10.1137/140972007. |
[20] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[21] |
A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y-C. Lai, A. Morozov, S. Petrovskii, K. Scranton and M. L. Zeeman, Transient phenomena in ecology, Science, 07 (2018). Google Scholar |
[22] |
F. M. Hilker and H. Malchow,
Strange periodic attractors in a prey-predator system with infected prey, Math. Pop. Studies, 13 (2006), 119-134.
doi: 10.1080/08898480600788568. |
[23] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[24] |
M. T. M. Koper,
Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol- Duffing model with a cross-shaped phase diagram, Physica D, 80 (1995), 72-74.
doi: 10.1016/0167-2789(95)90061-6. |
[25] |
E. Korpim$\ddot{\mathrm{a}}$ki, P. R. Brown, J. Jacob and R. P. Pech, The puzzles of population cycles and outbreaks of small mammals solved?, BioScience, 54 (2004), 1071–1079. https://academic.oup.com/bioscience/article/54/12/1071/329290. Google Scholar |
[26] |
M. Krupa, N. Popović and N. Kopell,
Mixed-mode oscillations in three time-scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7 (2008), 361-420.
doi: 10.1137/070688912. |
[27] |
M. Krupa and M. Wechselberger,
Local analysis near a folded saddle-node singularity, J. of Differential Equations, 248 (2010), 2841-2888.
doi: 10.1016/j.jde.2010.02.006. |
[28] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[29] |
M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators, Chaos, 19 (2009), 043121, 10 pp.
doi: 10.1063/1.3270262. |
[30] |
Y. A. Kuznetsov, Elements of Applied BifurcationTheory, Springer-Verlag, New York, 1998. |
[31] |
B. Letson, J. Rubin and T. Vo,
Analysis of interacting local oscillation mechanisms in three-timescale systems, SIAM J. Appl. Math., 77 (2017), 1020-1046.
doi: 10.1137/16M1088429. |
[32] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Diff. Equ., 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[33] |
J. Maselko and H. L. Swinney,
Complex periodic oscillation and Farey arithmetic in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 85 (1986), 6430-6441.
doi: 10.1063/1.451473. |
[34] |
R. McGehee and R. A. Armstrong,
Some mathematical problems concerning the ecological principle of competitive exclusion, J. Diff. Eq., 23 (1977), 30-52.
doi: 10.1016/0022-0396(77)90135-8. |
[35] |
A. Y. Morozov, M. Banerjee and S. V. Petrovskii, Long term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, J. Theo. Biol., 396 (2016), 116-124. Google Scholar |
[36] |
A. Morozov, K. Abbott, K. Cuddington, T. Francisd, G. Gellnere, A. Hastings, Y.-C. Laig, S. Petrovskii, K. Scranton and M. LouZeeman, Long transients in ecology: Theory and applications, Physics of Life Reviews, 32 (2020, ) 1–40.
doi: 10.1016/j.plrev.2019.09.004. |
[37] |
J. Mujica, B. Krauskopf and H. M. Osinga,
Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018), 1395-1431.
doi: 10.1137/17M1133452. |
[38] |
S. Muratori and S. Rinaldi,
Remarks on competitive coexistence, SIAM J. Applied Math., 49 (1989), 1462-1472.
doi: 10.1137/0149088. |
[39] |
A. B. Peet, P. A. Deutsch and E. Peacock-Lpez,
Complex dynamics in a three-level trophic system with intraspecies interaction, J. Theor. Biol., 232 (2005), 491-503.
doi: 10.1016/j.jtbi.2004.08.028. |
[40] |
J.-C. Poggiale, C. Aldebert, B. Girardot and B. W. Kooi,
Analysis of a predatorprey model with specific time scales: a geometrical approach proving the occurrence of canard solutions, J. of Math. Bio., 80 (2020), 39-60.
doi: 10.1007/s00285-019-01337-4. |
[41] |
L. C. Pontryagin, Asymptotic behavior of solutions of systems of differential equations with a small parameter in the derivatives of highest order, Izv. Akad. Nauk. SSSR Ser. Math., 21 (1957), 605–626 (in Russian). |
[42] |
S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecological Modelling, 61 (1992), 287-308. Google Scholar |
[43] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[44] |
H. G. Rotstein, M. Wechselberger and N. Kopell,
Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J Applied Dynamical Systems, 7 (2008), 1582-1611.
doi: 10.1137/070699093. |
[45] |
S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis,
Coexistence in competition models with density-dependent mortality, C. R. Biologies, 330 (2007), 845-854.
doi: 10.1016/j.crvi.2007.10.004. |
[46] |
S. Sadhu, Stochasticity induced mixed-mode oscillations and distribution of recurrent outbreaks in an ecosystem, Chaos, 27(2017), 3, 033108.
doi: 10.1063/1.4977553. |
[47] |
S. Sadhu and S. Chakraborty Thakur,
Uncertainty and predictability in population dynamics of a bitrophic ecological model: Mixed-mode oscillations, bistability and sensitivity to parameters, Ecological Complexity, 32 (2017), 196-208.
doi: 10.1016/j.ecocom.2016.08.007. |
[48] |
S. Sadhu and C. Kuehn, Stochastic mixed-mode oscillations in a three-species predator-prey model, Chaos, 28 (2018), 3, 033606.
doi: 10.1063/1.4994830. |
[49] |
S. Sadhu, Analysis of long term transient dynamics near singular Hopf bifurcation in a two-timescale ecosystem, submitted. Google Scholar |
[50] |
S. Schecter,
Persistent unstable equilibria and closed orbits of a singularly perturbed equation, J. Diff. Eqns., 60 (1985), 131-141.
doi: 10.1016/0022-0396(85)90124-X. |
[51] |
M. Scheffer and S. R. Carpenter,
Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends in Ecol. and Evol., 18 (2003), 648-656.
doi: 10.1016/j.tree.2003.09.002. |
[52] |
M. Scheffer, Critical Transitions in Nature and Society, 16 Princeton University Press (2009). Google Scholar |
[53] |
P. Szmolyan and M. Wechselberger,
Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453.
doi: 10.1006/jdeq.2001.4001. |
[54] |
M. Wechselberger,
Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.
doi: 10.1137/030601995. |
[55] |
D. E. Wright, Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model, Aust. J. Ecol., 12 (1987), 423-437. Google Scholar |




















[1] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[2] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[3] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[4] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[5] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[6] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[7] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[8] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[9] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[10] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020452 |
[11] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[12] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[13] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[14] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[15] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[16] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[17] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[18] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[19] |
Alexandre Wagemakers, Alvar Daza, Miguel A. F. Sanjuán. How to detect Wada basins. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 717-739. doi: 10.3934/dcdsb.2020330 |
[20] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]