Layek and Pati (Phys. Lett. A, 2017) studied a nonlinear system of five coupled equations, which describe thermal relaxation in Rayleigh-Benard convection of a Boussinesq fluid layer, heated from below. Here we return to that paper and use techniques from dynamical systems theory to analyse the codimension-one Hopf bifurcation and codimension-two double-zero Bogdanov-Takens bifurcation. We determine the stability of the bifurcating limit cycle, and produce an unfolding of the normal form for codimension-two bifurcation for the Layek and Pati's model.
Citation: |
[1] |
F. A. Carrillo, F. Verduzco and J. Delgado, Analysis of the Takens-Bogdanov bifurcation on m-parameter ized vector fields, International Journal of Bifurcation and Chaos, 20 (2010), 995-1005.
doi: 10.1142/S0218127410026277.![]() ![]() ![]() |
[2] |
C. C. Daumann and P. C. Rech, Hyperchaos in convection with the Cattaneo-Christov heat-flux model, European Physical Journal B: Condensed Matter and Complex Systems, 92 (2019), 1-5.
![]() |
[3] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York. 1983.
doi: 10.1007/978-1-4612-1140-2.![]() ![]() ![]() |
[4] |
Yu. A. Kuznetsov, Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's, SIAM Journal on Numerical Analysis, 36 (1999), 1104-1124.
doi: 10.1137/S0036142998335005.![]() ![]() ![]() |
[5] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd Edition, Springer, New York, 2004.
doi: 10.1007/978-1-4757-3978-7.![]() ![]() ![]() |
[6] |
G. C. Layek and N. C. Pati, Bifurcations and chaos in convection taking non-Fourier heat-flux, Physics Letters A, 381 (2017), 3568-3575.
doi: 10.1016/j.physleta.2017.09.020.![]() ![]() ![]() |
[7] |
E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.![]() ![]() ![]() |
[8] |
E. N. Lorenz, Irregularity: A fundamental property of the atmosphere, Tellus A: Dynamic Meteorology and Oceanography, 36 (1984), 98-110.
doi: 10.3402/tellusa.v36i2.11473.![]() ![]() |
[9] |
S. Moon, J. M. Seo, B.-S. Han, J. Park and J.-J. Baik, A physically extended Lorenz system, Chaos, 29 (2019), 063129.
doi: 10.1063/1.5095466.![]() ![]() ![]() |
[10] |
L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica Scripta, 53 (1996), 83-84.
doi: 10.1088/0031-8949/53/1/015.![]() ![]() |
[11] |
J. Sotomayor, L. F. Mello and D. D. C. Braga, Bifurcation analysis of the Watt governor system, Computational and Applied Mathematics, 26 (2007), 19-44.
doi: 10.1590/S0101-82052007000100002.![]() ![]() ![]() |
[12] |
Z. Wei and W. Zhang, Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium, International Journal of Bifurcation and Chaos, 24 (2014), 1450127, 14 pp.
doi: 10.1142/S0218127414501272.![]() ![]() ![]() |