
-
Previous Article
Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem
- DCDS-B Home
- This Issue
-
Next Article
Feedback synchronization of FHN cellular neural networks
Codimension one and two bifurcations in Cattaneo-Christov heat flux model
1. | School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China, Zhejiang Institute, China University of Geosciences, Hangzhou, Zhejiang 311305, China |
2. | College of Mechanical Engineering, Beijing University of Technology, Beijing, 100124, China |
3. | Mathematical Institute, University of Oxford, Oxford OX2 6GG, England |
4. | Faculty of Mathematics and Mechanics, St. Petersburg State University, Peterhof, St. Petersburg, Russia, Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland |
Layek and Pati (Phys. Lett. A, 2017) studied a nonlinear system of five coupled equations, which describe thermal relaxation in Rayleigh-Benard convection of a Boussinesq fluid layer, heated from below. Here we return to that paper and use techniques from dynamical systems theory to analyse the codimension-one Hopf bifurcation and codimension-two double-zero Bogdanov-Takens bifurcation. We determine the stability of the bifurcating limit cycle, and produce an unfolding of the normal form for codimension-two bifurcation for the Layek and Pati's model.
References:
[1] |
F. A. Carrillo, F. Verduzco and J. Delgado,
Analysis of the Takens-Bogdanov bifurcation on m-parameter ized vector fields, International Journal of Bifurcation and Chaos, 20 (2010), 995-1005.
doi: 10.1142/S0218127410026277. |
[2] |
C. C. Daumann and P. C. Rech, Hyperchaos in convection with the Cattaneo-Christov heat-flux model, European Physical Journal B: Condensed Matter and Complex Systems, 92 (2019), 1-5. Google Scholar |
[3] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York. 1983.
doi: 10.1007/978-1-4612-1140-2. |
[4] |
Yu. A. Kuznetsov,
Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's, SIAM Journal on Numerical Analysis, 36 (1999), 1104-1124.
doi: 10.1137/S0036142998335005. |
[5] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd Edition, Springer, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[6] |
G. C. Layek and N. C. Pati,
Bifurcations and chaos in convection taking non-Fourier heat-flux, Physics Letters A, 381 (2017), 3568-3575.
doi: 10.1016/j.physleta.2017.09.020. |
[7] |
E. N. Lorenz,
Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[8] |
E. N. Lorenz,
Irregularity: A fundamental property of the atmosphere, Tellus A: Dynamic Meteorology and Oceanography, 36 (1984), 98-110.
doi: 10.3402/tellusa.v36i2.11473. |
[9] |
S. Moon, J. M. Seo, B.-S. Han, J. Park and J.-J. Baik, A physically extended Lorenz system, Chaos, 29 (2019), 063129.
doi: 10.1063/1.5095466. |
[10] |
L. Stenflo,
Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica Scripta, 53 (1996), 83-84.
doi: 10.1088/0031-8949/53/1/015. |
[11] |
J. Sotomayor, L. F. Mello and D. D. C. Braga,
Bifurcation analysis of the Watt governor system, Computational and Applied Mathematics, 26 (2007), 19-44.
doi: 10.1590/S0101-82052007000100002. |
[12] |
Z. Wei and W. Zhang, Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium, International Journal of Bifurcation and Chaos, 24 (2014), 1450127, 14 pp.
doi: 10.1142/S0218127414501272. |
show all references
References:
[1] |
F. A. Carrillo, F. Verduzco and J. Delgado,
Analysis of the Takens-Bogdanov bifurcation on m-parameter ized vector fields, International Journal of Bifurcation and Chaos, 20 (2010), 995-1005.
doi: 10.1142/S0218127410026277. |
[2] |
C. C. Daumann and P. C. Rech, Hyperchaos in convection with the Cattaneo-Christov heat-flux model, European Physical Journal B: Condensed Matter and Complex Systems, 92 (2019), 1-5. Google Scholar |
[3] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York. 1983.
doi: 10.1007/978-1-4612-1140-2. |
[4] |
Yu. A. Kuznetsov,
Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's, SIAM Journal on Numerical Analysis, 36 (1999), 1104-1124.
doi: 10.1137/S0036142998335005. |
[5] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd Edition, Springer, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[6] |
G. C. Layek and N. C. Pati,
Bifurcations and chaos in convection taking non-Fourier heat-flux, Physics Letters A, 381 (2017), 3568-3575.
doi: 10.1016/j.physleta.2017.09.020. |
[7] |
E. N. Lorenz,
Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[8] |
E. N. Lorenz,
Irregularity: A fundamental property of the atmosphere, Tellus A: Dynamic Meteorology and Oceanography, 36 (1984), 98-110.
doi: 10.3402/tellusa.v36i2.11473. |
[9] |
S. Moon, J. M. Seo, B.-S. Han, J. Park and J.-J. Baik, A physically extended Lorenz system, Chaos, 29 (2019), 063129.
doi: 10.1063/1.5095466. |
[10] |
L. Stenflo,
Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica Scripta, 53 (1996), 83-84.
doi: 10.1088/0031-8949/53/1/015. |
[11] |
J. Sotomayor, L. F. Mello and D. D. C. Braga,
Bifurcation analysis of the Watt governor system, Computational and Applied Mathematics, 26 (2007), 19-44.
doi: 10.1590/S0101-82052007000100002. |
[12] |
Z. Wei and W. Zhang, Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium, International Journal of Bifurcation and Chaos, 24 (2014), 1450127, 14 pp.
doi: 10.1142/S0218127414501272. |







[1] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[2] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[3] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[6] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[7] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[8] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[9] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[10] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[11] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[12] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[13] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[14] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[15] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[16] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[17] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[18] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[19] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[20] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]