doi: 10.3934/dcdsb.2020346

Qualitative analysis of a generalized Nosé-Hoover oscillator

1. 

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

Hubei Key Laboratory of Engineering Modeling and Science Computing, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author: Xiao-Song Yang

Received  November 2019 Revised  July 2020 Published  November 2020

Fund Project: The first author is supported by NSFC grant 51979116

In this paper, we analyze the qualitative dynamics of a generalized Nosé-Hoover oscillator with two parameters varying in certain scope. We show that if a solution of this oscillator will not tend to the invariant manifold $ \{(x,y,z)\in \mathbb R^3|x = 0,y = 0\} $, it must pass through the plane $ z = 0 $ infinite times. Especially, every invariant set of this oscillator must have intersection with the plane $ z = 0 $. In addition, we show that if a solution is quasiperiodic, it must pass through at least five quadrants of $ \mathbb R^3 $.

Citation: Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020346
References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

show all references

References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

Figure 1.  The grid is part of $ S_{1} $ and the shadow is part of $ S_{2} $
Figure 2.  The shadow is the projection of the region $ I $ on the plane $ z = 0 $
Figure 3.  $ A_{1}\rightarrow A_{2} $ means there are solutions from $ A_{1} $ to $ A_{2} $, $ B_{1}\dashrightarrow A_{2} $ means there are solutions from $ B_{1} $ to $ A_{2} $ and these solutions have intersection with $ X $-axis or $ Y $-axis
Figure 4.  From right to left are $ l_{10} $ and $ l_{20} $
Figure 5.  From right to left are $ l_{01} $, $ l_{02} $, $ l_{03} $ and $ l_{04} $
[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[3]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[4]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[5]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[6]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[9]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[15]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[16]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (14)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]