October  2021, 26(10): 5355-5382. doi: 10.3934/dcdsb.2020347

Optimal control strategies for an online game addiction model with low and high risk exposure

School of Science, Guilin University of Technology, Guilin, Guangxi 541004, China

* Corresponding author: Tingting Li

Received  May 2020 Revised  August 2020 Published  October 2021 Early access  November 2020

Fund Project: The second author is supported by the Basic Competence Promotion Project for Young and Middle-aged Teachers in Guangxi, China (2019KY0269)

In this paper, we establish a new online game addiction model with low and high risk exposure. With the help of the next generation matrix, the basic reproduction number $ R_{0} $ is obtained. By constructing a suitable Lyapunov function, the equilibria of the model are Globally Asymptotically Stable. We use the optimal control theory to study the optimal solution problem with three kinds of control measures (isolation, education and treatment) and get the expression of optimal control. In the simulation, we first verify the Globally Asymptotical Stability of Disease-Free Equilibrium and Endemic Equilibrium, and obtain that the different trajectories with different initial values converges to the equilibria. Then the simulations of nine control strategies are obtained by forward-backward sweep method, and they are compared with the situation of without control respectively. The results show that we should implement the three kinds of control measures according to the optimal control strategy at the same time, which can effectively reduce the situation of game addiction.

Citation: Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5355-5382. doi: 10.3934/dcdsb.2020347
References:
[1]

F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in pakistan, Math. Biosci., 305 (2018), 102-121.  doi: 10.1016/j.mbs.2018.09.007.

[2]

J. O. AkanniF. O. AkinpeluS. OlaniyiA. T. Oladipo and A. W. Ogunsola, Modelling financial crime population dynamics: Optimal control and cost-effectiveness analysis, Int. J. Dyn. Control, 8 (2020), 531-544.  doi: 10.1007/s40435-019-00572-3.

[3]

A. Barrea and M. E. Hernández, Optimal control of a delayed breast cancer stem cells nonlinear model, Optimal Control Appl. Methods, 37 (2016), 248-258.  doi: 10.1002/oca.2164.

[4]

E. BonyahM. A. KhanK. O. Okosun and J. F. Gómez-Aguilar, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control, Math. Biosci., 309 (2019), 1-11.  doi: 10.1016/j.mbs.2018.12.015.

[5]

D. K. Das, S. Khajanchi and T. K. Kar, The impact of the media awareness and optimal strategy on the prevalence of tuberculosis, Appl. Math. Comput., 366 (2020), 124732, 23 pp. doi: 10.1016/j.amc.2019.124732.

[6]

C. DingY. Sun and Y. Zhu, A schistosomiasis compartment model with incubation and its optimal control, Math. Methods Appl. Sci., 40 (2017), 5079-5094.  doi: 10.1002/mma.4372.

[7]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[8]

G. FanH. R. Thieme and H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015), 1017-1048.  doi: 10.1007/s00285-014-0845-0.

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975.

[10]

D. Gao and N. Huang, Optimal control analysis of a tuberculosis model, Appl. Math. Model., 58 (2018), 47-64.  doi: 10.1016/j.apm.2017.12.027.

[11]

Y. Guo and T. Li, Optimal control and stability analysis of an online game addiction model with two stages, Math. Method App. Sci., 43 (2020), 4391-4408. 

[12]

K. Hattaf, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomathematics, (2012), Article ID215124.

[13]

J. M. HeffernanR. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281-293.  doi: 10.1098/rsif.2005.0042.

[14]

H.-F. HuoF.-F. Cui and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Physica A, 496 (2018), 249-262.  doi: 10.1016/j.physa.2018.01.003.

[15]

H.-F. Huo and X.-M. Zhang, Complex dynamics in an alcoholism model with the impact of Twitter, Math. Biosci., 281 (2016), 24-35.  doi: 10.1016/j.mbs.2016.08.009.

[16]

M. A. KhanS. W. ShahS. Ullah and J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal. Real World Appl., 50 (2019), 144-170.  doi: 10.1016/j.nonrwa.2019.04.006.

[17] Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, Inc., Boston, MA, 1993. 
[18]

V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York, 1989.

[19]

T. Li and Y. Guo, Stability and optimal control in a mathematical model of online game addiction, Filomat, 33 (2019), 5691-5711. 

[20]

Z. Lin and H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[21]

Z. Lu, From E-Heroin to E-sports: The development of competitive gaming in China, The International Journal of the History of Sport, 33 (2017), 2186-2206.  doi: 10.1080/09523367.2017.1358167.

[22] D. L. Lukes, Differential Equations: Classical to Controlled, Matheatics in Science and Engineering, Academia Press, New York, 1982. 
[23]

M. McAseyL. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53 (2012), 207-226.  doi: 10.1007/s10589-011-9454-7.

[24]

K. O. OkosunM. A. KhanE. Bonyah and O. O. Okosun, Cholera-schistosomiasis coinfection dynamics, Optim. Contr. Appl. Met., 40 (2019), 703-727.  doi: 10.1002/oca.2507.

[25]

K. A. PawelekA. Oeldorf-Hirsch and L. Rong, Modeling the impact of Twitter on influenza epidemics, Math. Biosci. Eng., 11 (2014), 1337-1356.  doi: 10.3934/mbe.2014.11.1337.

[26]

M. SanaR. SaleemA. Manaf and M. Habib, Varying forward backward sweep method using Runge-Kutta, Euler and Trapezoidal scheme as applied to optimal control problems, Sci.Int.(Labore), 27 (2015), 839-843. 

[27]

O. Sharomi and A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475-499.  doi: 10.1016/j.amc.2007.05.012.

[28]

Statistical Classification of Sports Industry, 2019. Available from: http://www.stats.gov.cn/tjgz/tzgb/201904/t20190409_1658556.html.

[29]

X. SunH. Nishiura and Y. Xiao, Modeling methods for estimating HIV incidence: A mathematical review, Theor. Biol. Med. Model, 17 (2020), 1-14.  doi: 10.1186/s12976-019-0118-0.

[30]

C. S. TangY. W. Koh and Y. Q. Gan, Addiction to internet use, online gaming, and online social networking among young adults in China, Singapore, and the United States, Asia Pac. J. Public. He, 29 (2017), 673-682.  doi: 10.1177/1010539517739558.

[31]

The 43rd Statistical Report on Internet Development in China, 2019. Available from: http://www.cac.gov.cn.

[32]

X. TianR. Xu and J. Lin, Mathematical analysis of a cholera infection model with vaccination strategy, Appl. Math. Comput., 361 (2019), 517-535.  doi: 10.1016/j.amc.2019.05.055.

[33]

S. UllahM. A. Khan and J. F. Gómez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Contr. Appl. Met., 40 (2019), 529-544.  doi: 10.1002/oca.2493.

[34]

R. Viriyapong and M. Sookpiam, Education campaign and family understanding affect stability and qualitative behavior ofan online game addiction model for children and youth in Thailand, Math. Method App. Sci., 42 (2019), 6906-6916.  doi: 10.1002/mma.5796.

[35]

X. WangM. ShenY. Xiao and L. Rong, Optimal control and cost-effectiveness analysis of a Zika virus infection model with comprehensive interventions, Appl. Math. Comput., 359 (2019), 165-185.  doi: 10.1016/j.amc.2019.04.026.

[36]

X. WangY. ShiD. Wang and C. Xu, Dynamic Analysis on a Kind of Mathematical Model Incorporating Online Game Addiction Model and Age-Structure, Journal of Beijing University of Civil Engineering and Architecture, 2 (2017), 54-58. 

[37]

World Health Statistics 2019, 2019. Available from: https://www.who.int/data/gho/publications/world-health-statistics.

[38]

T. A. Yıldız and E. Karaoǧlu, Optimal control strategies for tuberculosis dynamics with exogenous reinfections in case of treatment at home and treatment in hospital, Nonlinear Dynam., 97 (2019), 2643-2659. 

[39]

Z.-K. ZhangC. LiuX.-X. ZhanX. LuC.-X. Zhang and Y.-C. Zhang, Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651 (2016), 1-34.  doi: 10.1016/j.physrep.2016.07.002.

[40]

W. Zhou, Y. Xiao and J. M. Heffernan, Optimal media reporting intensity on mitigating spread of an emerging infectious disease, Plos. One, 3 (2019), E0213898. doi: 10.1371/journal.pone.0213898.

show all references

References:
[1]

F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in pakistan, Math. Biosci., 305 (2018), 102-121.  doi: 10.1016/j.mbs.2018.09.007.

[2]

J. O. AkanniF. O. AkinpeluS. OlaniyiA. T. Oladipo and A. W. Ogunsola, Modelling financial crime population dynamics: Optimal control and cost-effectiveness analysis, Int. J. Dyn. Control, 8 (2020), 531-544.  doi: 10.1007/s40435-019-00572-3.

[3]

A. Barrea and M. E. Hernández, Optimal control of a delayed breast cancer stem cells nonlinear model, Optimal Control Appl. Methods, 37 (2016), 248-258.  doi: 10.1002/oca.2164.

[4]

E. BonyahM. A. KhanK. O. Okosun and J. F. Gómez-Aguilar, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control, Math. Biosci., 309 (2019), 1-11.  doi: 10.1016/j.mbs.2018.12.015.

[5]

D. K. Das, S. Khajanchi and T. K. Kar, The impact of the media awareness and optimal strategy on the prevalence of tuberculosis, Appl. Math. Comput., 366 (2020), 124732, 23 pp. doi: 10.1016/j.amc.2019.124732.

[6]

C. DingY. Sun and Y. Zhu, A schistosomiasis compartment model with incubation and its optimal control, Math. Methods Appl. Sci., 40 (2017), 5079-5094.  doi: 10.1002/mma.4372.

[7]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[8]

G. FanH. R. Thieme and H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015), 1017-1048.  doi: 10.1007/s00285-014-0845-0.

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975.

[10]

D. Gao and N. Huang, Optimal control analysis of a tuberculosis model, Appl. Math. Model., 58 (2018), 47-64.  doi: 10.1016/j.apm.2017.12.027.

[11]

Y. Guo and T. Li, Optimal control and stability analysis of an online game addiction model with two stages, Math. Method App. Sci., 43 (2020), 4391-4408. 

[12]

K. Hattaf, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomathematics, (2012), Article ID215124.

[13]

J. M. HeffernanR. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281-293.  doi: 10.1098/rsif.2005.0042.

[14]

H.-F. HuoF.-F. Cui and H. Xiang, Dynamics of an SAITS alcoholism model on unweighted and weighted networks, Physica A, 496 (2018), 249-262.  doi: 10.1016/j.physa.2018.01.003.

[15]

H.-F. Huo and X.-M. Zhang, Complex dynamics in an alcoholism model with the impact of Twitter, Math. Biosci., 281 (2016), 24-35.  doi: 10.1016/j.mbs.2016.08.009.

[16]

M. A. KhanS. W. ShahS. Ullah and J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal. Real World Appl., 50 (2019), 144-170.  doi: 10.1016/j.nonrwa.2019.04.006.

[17] Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, Inc., Boston, MA, 1993. 
[18]

V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York, 1989.

[19]

T. Li and Y. Guo, Stability and optimal control in a mathematical model of online game addiction, Filomat, 33 (2019), 5691-5711. 

[20]

Z. Lin and H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[21]

Z. Lu, From E-Heroin to E-sports: The development of competitive gaming in China, The International Journal of the History of Sport, 33 (2017), 2186-2206.  doi: 10.1080/09523367.2017.1358167.

[22] D. L. Lukes, Differential Equations: Classical to Controlled, Matheatics in Science and Engineering, Academia Press, New York, 1982. 
[23]

M. McAseyL. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53 (2012), 207-226.  doi: 10.1007/s10589-011-9454-7.

[24]

K. O. OkosunM. A. KhanE. Bonyah and O. O. Okosun, Cholera-schistosomiasis coinfection dynamics, Optim. Contr. Appl. Met., 40 (2019), 703-727.  doi: 10.1002/oca.2507.

[25]

K. A. PawelekA. Oeldorf-Hirsch and L. Rong, Modeling the impact of Twitter on influenza epidemics, Math. Biosci. Eng., 11 (2014), 1337-1356.  doi: 10.3934/mbe.2014.11.1337.

[26]

M. SanaR. SaleemA. Manaf and M. Habib, Varying forward backward sweep method using Runge-Kutta, Euler and Trapezoidal scheme as applied to optimal control problems, Sci.Int.(Labore), 27 (2015), 839-843. 

[27]

O. Sharomi and A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475-499.  doi: 10.1016/j.amc.2007.05.012.

[28]

Statistical Classification of Sports Industry, 2019. Available from: http://www.stats.gov.cn/tjgz/tzgb/201904/t20190409_1658556.html.

[29]

X. SunH. Nishiura and Y. Xiao, Modeling methods for estimating HIV incidence: A mathematical review, Theor. Biol. Med. Model, 17 (2020), 1-14.  doi: 10.1186/s12976-019-0118-0.

[30]

C. S. TangY. W. Koh and Y. Q. Gan, Addiction to internet use, online gaming, and online social networking among young adults in China, Singapore, and the United States, Asia Pac. J. Public. He, 29 (2017), 673-682.  doi: 10.1177/1010539517739558.

[31]

The 43rd Statistical Report on Internet Development in China, 2019. Available from: http://www.cac.gov.cn.

[32]

X. TianR. Xu and J. Lin, Mathematical analysis of a cholera infection model with vaccination strategy, Appl. Math. Comput., 361 (2019), 517-535.  doi: 10.1016/j.amc.2019.05.055.

[33]

S. UllahM. A. Khan and J. F. Gómez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Contr. Appl. Met., 40 (2019), 529-544.  doi: 10.1002/oca.2493.

[34]

R. Viriyapong and M. Sookpiam, Education campaign and family understanding affect stability and qualitative behavior ofan online game addiction model for children and youth in Thailand, Math. Method App. Sci., 42 (2019), 6906-6916.  doi: 10.1002/mma.5796.

[35]

X. WangM. ShenY. Xiao and L. Rong, Optimal control and cost-effectiveness analysis of a Zika virus infection model with comprehensive interventions, Appl. Math. Comput., 359 (2019), 165-185.  doi: 10.1016/j.amc.2019.04.026.

[36]

X. WangY. ShiD. Wang and C. Xu, Dynamic Analysis on a Kind of Mathematical Model Incorporating Online Game Addiction Model and Age-Structure, Journal of Beijing University of Civil Engineering and Architecture, 2 (2017), 54-58. 

[37]

World Health Statistics 2019, 2019. Available from: https://www.who.int/data/gho/publications/world-health-statistics.

[38]

T. A. Yıldız and E. Karaoǧlu, Optimal control strategies for tuberculosis dynamics with exogenous reinfections in case of treatment at home and treatment in hospital, Nonlinear Dynam., 97 (2019), 2643-2659. 

[39]

Z.-K. ZhangC. LiuX.-X. ZhanX. LuC.-X. Zhang and Y.-C. Zhang, Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651 (2016), 1-34.  doi: 10.1016/j.physrep.2016.07.002.

[40]

W. Zhou, Y. Xiao and J. M. Heffernan, Optimal media reporting intensity on mitigating spread of an emerging infectious disease, Plos. One, 3 (2019), E0213898. doi: 10.1371/journal.pone.0213898.

Figure 1.  Transfer diagram of model
Figure 2.  DFE $ D_{0} = (829,0,0,0,0,0) $ is Globally Asymptotically Stable when $ R_{0} = 0.5778 < 1 $ and $ \beta = 0.2 $
Figure 3.  EE $ D^{*} = (358.829, 20.903, 31.354, 67.916, 25.648,324.35) $ is Globally Asymptotically Stable when $ R_{0} = 2.3111 > 1 $ and $ \beta = 0.8 $
Figure 4.  Dynamical behavior of infected when $ R_{0} = 0.5778 $ and $ \beta = 0.2 $
Figure 5.  Dynamical behavior of infected when $ R_{0} = 2.3111 $ and $ \beta = 0.8 $
Figure 6.  Graphical results for strategy A
Figure 7.  Graphical results for strategy B
Figure 8.  Graphical results for strategy C
Figure 9.  Graphical results for strategy D
Figure 10.  Graphical results for strategy E
Figure 11.  Graphical results for strategy F
Figure 12.  Graphical results for strategy G
Figure 13.  Graphical results for strategy H
Figure 14.  Graphical results for strategy I
Table 1.  Estimation of parameters
Parameters Descriptions Values
$ \mu $ Natural supplementary and death rate 0.05 per week
$ \theta $ Proportion of individuals who became low risk exposed 0.4 per week
$ \beta $ Contact transmission rate 0.1$ \sim $ 0.8 per week
$ v_{1} $ Proportion of $ E_{1} $ who become infected 0.2 per week
$ v_{2} $ Proportion of $ E_{1} $ who become professional 0.2 per week
$ w_{1} $ Proportion of $ E_{2} $ who become infected 0.3 per week
$ w_{2} $ Proportion of $ E_{1} $ who become professional 0.1 per week
$ k_{1} $ Proportion of $ I $ who become quitting 0.05 per week
$ k_{2} $ Proportion of $ I $ who become professional 0.1 per week
$ \delta $ Proportion of $ P $ who become quitting 0.5 per week
$ u_{1} $ The decreased proportion by isolation Variable
$ u_{2} $ The decreased proportion in $ E_{1} $ by prevention Variable
$ u_{3} $ The decreased proportion in $ E_{2} $ by prevention Variable
$ u_{4} $ The decreased proportion in $ I $ by treatment Variable
Parameters Descriptions Values
$ \mu $ Natural supplementary and death rate 0.05 per week
$ \theta $ Proportion of individuals who became low risk exposed 0.4 per week
$ \beta $ Contact transmission rate 0.1$ \sim $ 0.8 per week
$ v_{1} $ Proportion of $ E_{1} $ who become infected 0.2 per week
$ v_{2} $ Proportion of $ E_{1} $ who become professional 0.2 per week
$ w_{1} $ Proportion of $ E_{2} $ who become infected 0.3 per week
$ w_{2} $ Proportion of $ E_{1} $ who become professional 0.1 per week
$ k_{1} $ Proportion of $ I $ who become quitting 0.05 per week
$ k_{2} $ Proportion of $ I $ who become professional 0.1 per week
$ \delta $ Proportion of $ P $ who become quitting 0.5 per week
$ u_{1} $ The decreased proportion by isolation Variable
$ u_{2} $ The decreased proportion in $ E_{1} $ by prevention Variable
$ u_{3} $ The decreased proportion in $ E_{2} $ by prevention Variable
$ u_{4} $ The decreased proportion in $ I $ by treatment Variable
Table 2.  Results of different control strategies
Strategy Total infectious individuals ($ \int_{0}^{t_f}(E_{1}+E_{2}+I)dt) $ Averted infectious individuals Objective function $ J $
Without control 7461.1302 $ - $ $ 8.5947\times 10^{6} $
Strategy A 526.3468 6934.7835 $ 1.3646\times 10^{6} $
Strategy B 1426.9073 6034.2229 $ 2.5242\times 10^{6} $
Strategy C 701.3874 6759.7428 $ 1.7413\times 10^{6} $
Strategy D 524.2143 6936.9159 $ 1.3592\times 10^{6} $
Strategy E 525.4126 6935.7176 $ 1.3619\times 10^{6} $
Strategy F 525.0718 6936.0585 $ 1.3618\times 10^{6} $
Strategy G 579.8124 6881.3178 $ 4.784\times 10^{6} $
Strategy H 1626.7971 5834.3331 $ 2.7511\times 10^{6} $
Strategy I 658.0017 6803.1286 $ 2.6232\times 10^{6} $
Strategy Total infectious individuals ($ \int_{0}^{t_f}(E_{1}+E_{2}+I)dt) $ Averted infectious individuals Objective function $ J $
Without control 7461.1302 $ - $ $ 8.5947\times 10^{6} $
Strategy A 526.3468 6934.7835 $ 1.3646\times 10^{6} $
Strategy B 1426.9073 6034.2229 $ 2.5242\times 10^{6} $
Strategy C 701.3874 6759.7428 $ 1.7413\times 10^{6} $
Strategy D 524.2143 6936.9159 $ 1.3592\times 10^{6} $
Strategy E 525.4126 6935.7176 $ 1.3619\times 10^{6} $
Strategy F 525.0718 6936.0585 $ 1.3618\times 10^{6} $
Strategy G 579.8124 6881.3178 $ 4.784\times 10^{6} $
Strategy H 1626.7971 5834.3331 $ 2.7511\times 10^{6} $
Strategy I 658.0017 6803.1286 $ 2.6232\times 10^{6} $
[1]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[2]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[3]

Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control and Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019

[4]

Fabio Paronetto. Elliptic approximation of forward-backward parabolic equations. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1017-1036. doi: 10.3934/cpaa.2020047

[5]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[6]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[7]

G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783

[8]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[9]

Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941

[10]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1893-1906. doi: 10.3934/cpaa.2021051

[11]

Kaitong Hu, Zhenjie Ren, Nizar Touzi. On path-dependent multidimensional forward-backward SDEs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022010

[12]

Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022011

[13]

Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026

[14]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[15]

Flavia Smarrazzo, Andrea Terracina. Sobolev approximation for two-phase solutions of forward-backward parabolic problems. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1657-1697. doi: 10.3934/dcds.2013.33.1657

[16]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial and Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[17]

Karam Allali, Sanaa Harroudi, Delfim F. M. Torres. Optimal control of an HIV model with a trilinear antibody growth function. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 501-518. doi: 10.3934/dcdss.2021148

[18]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[19]

Haiyang Wang, Jianfeng Zhang. Forward backward SDEs in weak formulation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1021-1049. doi: 10.3934/mcrf.2018044

[20]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (373)
  • HTML views (346)
  • Cited by (0)

Other articles
by authors

[Back to Top]