
-
Previous Article
A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence
- DCDS-B Home
- This Issue
-
Next Article
Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications
An adaptive finite element DtN method for the three-dimensional acoustic scattering problem
1. | School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China |
2. | Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA |
This paper is concerned with a numerical solution of the acoustic scattering by a bounded impenetrable obstacle in three dimensions. The obstacle scattering problem is formulated as a boundary value problem in a bounded domain by using a Dirichlet-to-Neumann (DtN) operator. An a posteriori error estimate is derived for the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to decay exponentially with respect to the truncation parameter. Based on the a posteriori error estimate, an adaptive finite element method is developed for the obstacle scattering problem. The truncation parameter is determined by the truncation error of the DtN operator and the mesh elements for local refinement are marked through the finite element approximation error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.
References:
[1] |
I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.
![]() |
[2] |
G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar |
[3] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[4] |
G. Bao, G. Hu and D. Liu,
An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.
doi: 10.1016/j.jcp.2012.04.002. |
[5] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[6] |
G. Bao and H. Wu,
Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.
doi: 10.1137/040604315. |
[7] |
A. Bayliss and E. Turkel,
Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.
doi: 10.1002/cpa.3160330603. |
[8] |
J.-P. Berenger,
A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.
doi: 10.1006/jcph.1994.1159. |
[9] |
Z. Chen and X. Liu,
An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.
doi: 10.1137/040610337. |
[10] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[11] |
F. Collino and P. Monk,
The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.
doi: 10.1137/S1064827596301406. |
[12] |
D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983. |
[13] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998.
doi: 10.1007/978-3-662-03537-5. |
[14] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.2307/2005997. |
[15] |
Q. Fang, D. P. Nicholls and J. Shen,
A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.
doi: 10.1016/j.jcp.2006.11.018. |
[16] |
C. Geuzaine and J.-F. Remacle,
GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.
doi: 10.1002/nme.2579. |
[17] |
M. J. Grote and J. B. Keller,
On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.
doi: 10.1006/jcph.1995.1210. |
[18] |
M. J. Grote and C. Kirsch,
Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.
doi: 10.1016/j.jcp.2004.06.012. |
[19] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.
doi: 10.1017/S0962492900002890. |
[20] |
I. Harari and T. J. R. Hughes,
Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.
doi: 10.1016/0045-7825(92)90109-W. |
[21] |
D. Jerison and C. Kenig,
Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[22] |
X. Jiang, P. Li, J. Lv and W. Zheng,
An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.
doi: 10.1007/s10915-017-0382-2. |
[23] |
X. Jiang, P. Li and W. Zheng,
Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.
doi: 10.4208/cicp.301011.270412a. |
[24] |
J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002. |
[25] |
A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015.
doi: 10.1007/978-3-319-11086-8. |
[26] |
P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722.
doi: 10.1016/j.cma.2019.112722. |
[27] |
Y. Li, W. Zheng and X. Zhu,
A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.
doi: 10.4208/csiam-am.2020-0025. |
[28] |
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.![]() ![]() |
[29] |
J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar |
[30] |
A. H. Schatz,
An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.
doi: 10.2307/2005357. |
[31] |
E. Turkel and A. Yefet,
Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.
doi: 10.1016/S0168-9274(98)00026-9. |
[32] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[33] |
X. Yuan, G. Bao and P. Li,
An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.
doi: 10.4208/csiam-am.2020-0013. |
show all references
References:
[1] |
I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.
![]() |
[2] |
G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar |
[3] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[4] |
G. Bao, G. Hu and D. Liu,
An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.
doi: 10.1016/j.jcp.2012.04.002. |
[5] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[6] |
G. Bao and H. Wu,
Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.
doi: 10.1137/040604315. |
[7] |
A. Bayliss and E. Turkel,
Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.
doi: 10.1002/cpa.3160330603. |
[8] |
J.-P. Berenger,
A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.
doi: 10.1006/jcph.1994.1159. |
[9] |
Z. Chen and X. Liu,
An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.
doi: 10.1137/040610337. |
[10] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[11] |
F. Collino and P. Monk,
The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.
doi: 10.1137/S1064827596301406. |
[12] |
D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983. |
[13] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998.
doi: 10.1007/978-3-662-03537-5. |
[14] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.2307/2005997. |
[15] |
Q. Fang, D. P. Nicholls and J. Shen,
A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.
doi: 10.1016/j.jcp.2006.11.018. |
[16] |
C. Geuzaine and J.-F. Remacle,
GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.
doi: 10.1002/nme.2579. |
[17] |
M. J. Grote and J. B. Keller,
On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.
doi: 10.1006/jcph.1995.1210. |
[18] |
M. J. Grote and C. Kirsch,
Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.
doi: 10.1016/j.jcp.2004.06.012. |
[19] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.
doi: 10.1017/S0962492900002890. |
[20] |
I. Harari and T. J. R. Hughes,
Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.
doi: 10.1016/0045-7825(92)90109-W. |
[21] |
D. Jerison and C. Kenig,
Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205. |
[22] |
X. Jiang, P. Li, J. Lv and W. Zheng,
An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.
doi: 10.1007/s10915-017-0382-2. |
[23] |
X. Jiang, P. Li and W. Zheng,
Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.
doi: 10.4208/cicp.301011.270412a. |
[24] |
J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002. |
[25] |
A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015.
doi: 10.1007/978-3-319-11086-8. |
[26] |
P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722.
doi: 10.1016/j.cma.2019.112722. |
[27] |
Y. Li, W. Zheng and X. Zhu,
A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.
doi: 10.4208/csiam-am.2020-0025. |
[28] |
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.![]() ![]() |
[29] |
J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar |
[30] |
A. H. Schatz,
An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.
doi: 10.2307/2005357. |
[31] |
E. Turkel and A. Yefet,
Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.
doi: 10.1016/S0168-9274(98)00026-9. |
[32] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[33] |
X. Yuan, G. Bao and P. Li,
An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.
doi: 10.4208/csiam-am.2020-0013. |






1 | Given a tolerance |
2 | Choose |
3 | Construct an initial tetrahedral partition |
4 | While |
5 | mark |
6 | solve the discrete problem on the |
7 | compute the corresponding error estimators; |
8 | End while. |
1 | Given a tolerance |
2 | Choose |
3 | Construct an initial tetrahedral partition |
4 | While |
5 | mark |
6 | solve the discrete problem on the |
7 | compute the corresponding error estimators; |
8 | End while. |
[1] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[2] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[3] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[4] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[5] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[6] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[7] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[8] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[9] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[10] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[11] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[12] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[13] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[14] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[15] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[16] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[17] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[18] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
[19] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[20] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]