• Previous Article
    On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type
  • DCDS-B Home
  • This Issue
  • Next Article
    Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise
October  2021, 26(10): 5449-5463. doi: 10.3934/dcdsb.2020353

Norm inflation for the Boussinesq system

1. 

Department of Mathematics, Rutgers University, Hill Center - Busch Campus 110 Frelinghuysen Road, Piscataway, NJ 08854, USA

2. 

Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721, USA

Received  February 2020 Published  October 2021 Early access  December 2020

Fund Project: The second author was supported in part by NSF grant DMS-1907992

We prove the norm inflation phenomena for the Boussinesq system on $ \mathbb T^3 $. For arbitrarily small initial data $ (u_0,\rho_0) $ in the negative-order Besov spaces $ \dot{B}^{-1}_{\infty, \infty} \times \dot{B}^{-1}_{\infty, \infty} $, the solution can become arbitrarily large in a short time. Such largeness can be detected in $ \rho $ in Besov spaces of any negative order: $ \dot{B}^{-s}_{\infty, \infty} $ for any $ s>0 $.

Citation: Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353
References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

L. Brandolese and J. He, Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.  doi: 10.2748/tmj/1593136822.  Google Scholar

[3]

L. Brandolese and C. Mouzouni, A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.  doi: 10.1007/s00332-017-9379-0.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.  doi: 10.1007/s00205-013-0610-3.  Google Scholar

[5]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[6]

R. M. Chen and Y. Liu, On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.  doi: 10.1007/s11854-013-0037-7.  Google Scholar

[7]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.  doi: 10.1512/iumj.2014.63.5249.  Google Scholar

[8]

A. Cheskidov and M. Dai, Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.  doi: 10.1088/0951-7715/28/1/129.  Google Scholar

[9]

M. DaiJ. Qing and M. E. Schonbek, Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$  , Adv. Differential Equations, 16 (2011), 725-746.   Google Scholar

[10] C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511608803.  Google Scholar
[11]

D.-A. GebaA. A. Himonasb and D. Karapetyana, Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.  doi: 10.1016/j.na.2013.09.017.  Google Scholar

[12]

T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.   Google Scholar

[13]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

I. Kukavica and W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.   Google Scholar

[16]

I. Kukavica and W. Wang, Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.  doi: 10.1007/s10884-019-09802-w.  Google Scholar

[17]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[18]

A. R. NahmodN. Pavlović and G. Staffilani, Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.  doi: 10.1137/120882184.  Google Scholar

[19]

A. Stefanov and J. Wu, A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.  doi: 10.1007/s11854-018-0073-4.  Google Scholar

[20]

R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition. doi: 10.1090/chel/343.  Google Scholar

[21]

W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp. doi: 10.1007/s00033-019-1221-0.  Google Scholar

[22]

W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020.  Google Scholar

[23]

W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. Google Scholar

[24]

W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. Google Scholar

[25]

W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. Google Scholar

[26]

W. Wang and H. Yue, Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.  doi: 10.4310/DPDE.2020.v17.n2.a4.  Google Scholar

[27]

T. Yoneda, Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

show all references

References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

L. Brandolese and J. He, Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.  doi: 10.2748/tmj/1593136822.  Google Scholar

[3]

L. Brandolese and C. Mouzouni, A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.  doi: 10.1007/s00332-017-9379-0.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.  doi: 10.1007/s00205-013-0610-3.  Google Scholar

[5]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[6]

R. M. Chen and Y. Liu, On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.  doi: 10.1007/s11854-013-0037-7.  Google Scholar

[7]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.  doi: 10.1512/iumj.2014.63.5249.  Google Scholar

[8]

A. Cheskidov and M. Dai, Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.  doi: 10.1088/0951-7715/28/1/129.  Google Scholar

[9]

M. DaiJ. Qing and M. E. Schonbek, Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$  , Adv. Differential Equations, 16 (2011), 725-746.   Google Scholar

[10] C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511608803.  Google Scholar
[11]

D.-A. GebaA. A. Himonasb and D. Karapetyana, Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.  doi: 10.1016/j.na.2013.09.017.  Google Scholar

[12]

T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.   Google Scholar

[13]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[15]

I. Kukavica and W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.   Google Scholar

[16]

I. Kukavica and W. Wang, Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.  doi: 10.1007/s10884-019-09802-w.  Google Scholar

[17]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[18]

A. R. NahmodN. Pavlović and G. Staffilani, Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.  doi: 10.1137/120882184.  Google Scholar

[19]

A. Stefanov and J. Wu, A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.  doi: 10.1007/s11854-018-0073-4.  Google Scholar

[20]

R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition. doi: 10.1090/chel/343.  Google Scholar

[21]

W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp. doi: 10.1007/s00033-019-1221-0.  Google Scholar

[22]

W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020.  Google Scholar

[23]

W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. Google Scholar

[24]

W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. Google Scholar

[25]

W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. Google Scholar

[26]

W. Wang and H. Yue, Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.  doi: 10.4310/DPDE.2020.v17.n2.a4.  Google Scholar

[27]

T. Yoneda, Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

[1]

Adán J. Corcho. Ill-Posedness for the Benney system. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 965-972. doi: 10.3934/dcds.2006.15.965

[2]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[3]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[6]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[7]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[8]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[9]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[10]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[11]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[12]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[13]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[14]

Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395

[15]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[16]

Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287

[17]

Claudia Valls. Stability of some waves in the Boussinesq system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 929-939. doi: 10.3934/cpaa.2006.5.929

[18]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[19]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[20]

Vladimir Angulo-Castillo, Lucas C. F. Ferreira. Long-time solvability in Besov spaces for the inviscid 3D-Boussinesq-Coriolis equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4553-4573. doi: 10.3934/dcdsb.2020112

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (116)
  • HTML views (295)
  • Cited by (1)

Other articles
by authors

[Back to Top]