doi: 10.3934/dcdsb.2020354

On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam, Department of Mathematics and Computer Science, University of Science Ho Chi Minh City-VNU, Vietnam

* Corresponding author: Nguyen Huy Tuan

Dedicated to Tomás Caraballo on his 60th birthday.

Received  June 2020 Revised  October 2020 Published  December 2020

We study for nonlinear Kirchhoff's model of pseudo parabolic type by considering its two different problems.

$ \bullet $ For initial value problem, we obtain the results on the existence and regularity of solutions. Moreover, we also prove that the solutions $ u $ corresponding with $ \beta < 1 $ of the problem convergence to $ u $ for $ \beta = 1 $.

$ \bullet $ For final value problem, we show that the ill-posed property in the sense of Hadamard is occurring. Using the Fourier truncation method to regularize the problem. We establish some stability estimates in the $ H^1 $ and $ L^p $ norms under some a-priori conditions on the sought solution.

Citation: Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020354
References:
[1]

R. M. P. AlmeidaS. N. Antontsev and J. C. M. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. RWA, 27 (2016), 146-157.  doi: 10.1016/j.nonrwa.2015.07.015.  Google Scholar

[2]

V. V. Au, M. Kirane and N. H. Tuan, On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms, Discrete Contin. Dyn. Syst. Ser. B, 174 (2020), 27 pages. Google Scholar

[3]

G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar

[4]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[5]

C. CaoM. A. Rammaha and E. S. Titi, The Navier-Stokes equations on the rotating $2$-D sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50 (1999), 341-360.  doi: 10.1007/PL00001493.  Google Scholar

[6]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[7]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[8]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[9]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[10]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[11]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reaction-diffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar

[12]

T. CaraballoJ. A. Langa and J. Valero, Extremal bounded complete trajectories for nonautonomous reaction-diffusion equations with discontinuous forcing term, Rev. Mat. Complut., 33 (2020), 583-617.  doi: 10.1007/s13163-019-00323-0.  Google Scholar

[13]

A. S. CarassoJ. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344-367.  doi: 10.1137/0715023.  Google Scholar

[14]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[15]

N.-H. Chang and M. Chipot, Nonlinear nonlocal evolution problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 423-445.   Google Scholar

[16]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996), Nonlinear Analysis: TMA, $\mathsf{30}$ (1997), 4619–4627. doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[17]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[18]

L. Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017), 382-392.   Google Scholar

[19]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[20]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar

[21]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar

[22]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

S. KunduK. A. Pani and M. Khebchareon, On Kirchhoff's model of parabolic type, Numer. Funct. Anal. Optim., 37 (2016), 719-752.  doi: 10.1080/01630563.2016.1176930.  Google Scholar

[25]

Z. Liu and S. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287.  doi: 10.1016/j.jmaa.2015.01.044.  Google Scholar

[26]

L. A. MedeirosJ. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, I., J. Comput. Anal. Appl., 4 (2002), 91-127.  doi: 10.1023/A:1012934900316.  Google Scholar

[27]

X. MingqiV. D. Rǎdulescu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[28]

X. Peng, Y. Shang and X. Zheng, Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion, Z. Angew. Math. Phys., 69 (2018), Paper No. 110, 14 pp. doi: 10.1007/s00033-018-1005-y.  Google Scholar

[29]

C. A. RaposoM. SepúlvedaO. V. VillagránD. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[30]

J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar

[31]

T. H. Skaggs and Z. J. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility, Water Resources Research., 31 (1995), 2669-2673.   Google Scholar

[32]

N. H. TuanV. A. Khoa and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60-85.  doi: 10.1137/18M1174064.  Google Scholar

[33]

N. H. TuanD. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar

[34]

N. H. Tuan, V. A. Vo, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 055019, 40 pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[35]

S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312.   Google Scholar

show all references

References:
[1]

R. M. P. AlmeidaS. N. Antontsev and J. C. M. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. RWA, 27 (2016), 146-157.  doi: 10.1016/j.nonrwa.2015.07.015.  Google Scholar

[2]

V. V. Au, M. Kirane and N. H. Tuan, On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms, Discrete Contin. Dyn. Syst. Ser. B, 174 (2020), 27 pages. Google Scholar

[3]

G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar

[4]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[5]

C. CaoM. A. Rammaha and E. S. Titi, The Navier-Stokes equations on the rotating $2$-D sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50 (1999), 341-360.  doi: 10.1007/PL00001493.  Google Scholar

[6]

T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.  Google Scholar

[7]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[8]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[9]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[10]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[11]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reaction-diffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar

[12]

T. CaraballoJ. A. Langa and J. Valero, Extremal bounded complete trajectories for nonautonomous reaction-diffusion equations with discontinuous forcing term, Rev. Mat. Complut., 33 (2020), 583-617.  doi: 10.1007/s13163-019-00323-0.  Google Scholar

[13]

A. S. CarassoJ. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344-367.  doi: 10.1137/0715023.  Google Scholar

[14]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[15]

N.-H. Chang and M. Chipot, Nonlinear nonlocal evolution problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 423-445.   Google Scholar

[16]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996), Nonlinear Analysis: TMA, $\mathsf{30}$ (1997), 4619–4627. doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[17]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[18]

L. Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017), 382-392.   Google Scholar

[19]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[20]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar

[21]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar

[22]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

S. KunduK. A. Pani and M. Khebchareon, On Kirchhoff's model of parabolic type, Numer. Funct. Anal. Optim., 37 (2016), 719-752.  doi: 10.1080/01630563.2016.1176930.  Google Scholar

[25]

Z. Liu and S. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287.  doi: 10.1016/j.jmaa.2015.01.044.  Google Scholar

[26]

L. A. MedeirosJ. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, I., J. Comput. Anal. Appl., 4 (2002), 91-127.  doi: 10.1023/A:1012934900316.  Google Scholar

[27]

X. MingqiV. D. Rǎdulescu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[28]

X. Peng, Y. Shang and X. Zheng, Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion, Z. Angew. Math. Phys., 69 (2018), Paper No. 110, 14 pp. doi: 10.1007/s00033-018-1005-y.  Google Scholar

[29]

C. A. RaposoM. SepúlvedaO. V. VillagránD. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[30]

J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar

[31]

T. H. Skaggs and Z. J. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility, Water Resources Research., 31 (1995), 2669-2673.   Google Scholar

[32]

N. H. TuanV. A. Khoa and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60-85.  doi: 10.1137/18M1174064.  Google Scholar

[33]

N. H. TuanD. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar

[34]

N. H. Tuan, V. A. Vo, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 055019, 40 pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[35]

S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312.   Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[2]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[5]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[6]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[7]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[8]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[9]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[10]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[11]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[12]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[13]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[14]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[15]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[20]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (107)
  • Cited by (0)

Other articles
by authors

[Back to Top]