
-
Previous Article
The spatially heterogeneous diffusive rabies model and its shadow system
- DCDS-B Home
- This Issue
-
Next Article
High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation
A diffusive weak Allee effect model with U-shaped emigration and matrix hostility
1. | Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA |
2. | Department of Mathematics, Auburn University Montgomery, Montgomery, AL 36124, USA |
3. | Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA |
$ \begin{equation*} \; \; \begin{matrix} -\Delta u = \lambda f(u);\; \Omega \\ \; \; \alpha(u)\frac{\partial u}{\partial \eta}+\gamma\sqrt{\lambda}[1-\alpha(u)]u = 0; \; \partial \Omega\end{matrix} \end{equation*} $ |
$ u $ |
$ f(u) = \frac{1}{a}u(u+a)(1-u) $ |
$ a\in (0,1) $ |
$ \alpha(u) $ |
$ \Omega $ |
$ \lambda $ |
$ \gamma $ |
$ \alpha(s) = \frac{1}{[1+(A - s)^2 + \epsilon]} $ |
$ s \in [0,1] $ |
$ A\in (0,1) $ |
$ \epsilon\geq 0 $ |
$ 1-\alpha(s) $ |
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
R. S. Cantrell and C. Cosner,
Density dependent behavior at habitat boundaries and the Allee effect, Bull. Math. Biol., 69 (2007), 2339-2360.
doi: 10.1007/s11538-007-9222-0. |
[3] |
J. T. Cronin, N. Fonseka, J. Goddard II, J. Leonard and R. Shivaji,
Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence, Math. Biosci. Eng., 17 (2020), 1718-1742.
doi: 10.3934/mbe.2020090. |
[4] |
J. T. Cronin, J. Goddard II and and R. Shivaji,
Effects of patch matrix-composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol., 81 (2019), 3933-3975.
doi: 10.1007/s11538-019-00634-9. |
[5] |
N. Fonseka, J. Goddard, Q. Morris, R. Shivaji and B. Son,
On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3401-3415.
doi: 10.3934/dcdss.2020245. |
[6] |
N. Fonseka, A. Muthunayake, R. Shivaji and B. Son, Singular reaction diffusion equations where a parameter influences the reaction term and the boundary condition, Topol. Methods Nonlinear Anal., Accepted. |
[7] |
J. Goddard II, Q. Morris, C. Payne and R. Shivaji,
A diffusive logistic equation with U-shaped density dependent dispersal on the boundary, Topol. Methods Nonlinear Anal., 53 (2019), 335-349.
doi: 10.12775/tmna.2018.047. |
[8] |
J. Goddard II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., 2018 (2018), Paper No. 170, 17 pp.
doi: 10.1186/s13661-018-1090-z. |
[9] |
J. Goddard II and R. Shivaji,
Stability analysis for positive solutions for classes of semilinear elliptic boundary-value problems with nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1019-1040.
doi: 10.1017/S0308210516000408. |
[10] |
R. R. Harman, J. Goddard II, R. Shivaji and J. T. Cronin,
Frequency of occurrence and population-dynamic consequences of different forms of density-dependent emigration, Am. Nat., 195 (2019), 851-867.
doi: 10.1086/708156. |
[11] |
F. Inkmann,
Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J., 31 (1982), 213-221.
doi: 10.1512/iumj.1982.31.31019. |
[12] |
M. A. Rivas and S. B. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 45, 25 pp.
doi: 10.1051/cocv/2018039. |
[13] |
D. H. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[14] |
J. Shi and R. Shivaji,
Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829.
doi: 10.1007/s00285-006-0373-7. |
[15] |
R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture notes in pure and applied mathematics, 109 (1987), 561–566, Ed. V. Lakshmikantham. |
show all references
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
R. S. Cantrell and C. Cosner,
Density dependent behavior at habitat boundaries and the Allee effect, Bull. Math. Biol., 69 (2007), 2339-2360.
doi: 10.1007/s11538-007-9222-0. |
[3] |
J. T. Cronin, N. Fonseka, J. Goddard II, J. Leonard and R. Shivaji,
Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence, Math. Biosci. Eng., 17 (2020), 1718-1742.
doi: 10.3934/mbe.2020090. |
[4] |
J. T. Cronin, J. Goddard II and and R. Shivaji,
Effects of patch matrix-composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol., 81 (2019), 3933-3975.
doi: 10.1007/s11538-019-00634-9. |
[5] |
N. Fonseka, J. Goddard, Q. Morris, R. Shivaji and B. Son,
On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3401-3415.
doi: 10.3934/dcdss.2020245. |
[6] |
N. Fonseka, A. Muthunayake, R. Shivaji and B. Son, Singular reaction diffusion equations where a parameter influences the reaction term and the boundary condition, Topol. Methods Nonlinear Anal., Accepted. |
[7] |
J. Goddard II, Q. Morris, C. Payne and R. Shivaji,
A diffusive logistic equation with U-shaped density dependent dispersal on the boundary, Topol. Methods Nonlinear Anal., 53 (2019), 335-349.
doi: 10.12775/tmna.2018.047. |
[8] |
J. Goddard II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., 2018 (2018), Paper No. 170, 17 pp.
doi: 10.1186/s13661-018-1090-z. |
[9] |
J. Goddard II and R. Shivaji,
Stability analysis for positive solutions for classes of semilinear elliptic boundary-value problems with nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1019-1040.
doi: 10.1017/S0308210516000408. |
[10] |
R. R. Harman, J. Goddard II, R. Shivaji and J. T. Cronin,
Frequency of occurrence and population-dynamic consequences of different forms of density-dependent emigration, Am. Nat., 195 (2019), 851-867.
doi: 10.1086/708156. |
[11] |
F. Inkmann,
Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J., 31 (1982), 213-221.
doi: 10.1512/iumj.1982.31.31019. |
[12] |
M. A. Rivas and S. B. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 45, 25 pp.
doi: 10.1051/cocv/2018039. |
[13] |
D. H. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[14] |
J. Shi and R. Shivaji,
Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829.
doi: 10.1007/s00285-006-0373-7. |
[15] |
R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture notes in pure and applied mathematics, 109 (1987), 561–566, Ed. V. Lakshmikantham. |


[1] |
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643 |
[2] |
Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629 |
[3] |
Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060 |
[4] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
[5] |
Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049 |
[6] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[7] |
Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022018 |
[8] |
Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283 |
[9] |
Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172 |
[10] |
Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040 |
[11] |
Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 |
[12] |
Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040 |
[13] |
Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 589-606. doi: 10.3934/dcdsb.2014.19.589 |
[14] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[15] |
Xiaoyuan Chang, Junping Shi. Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021242 |
[16] |
Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 |
[17] |
Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 |
[18] |
Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247 |
[19] |
Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208 |
[20] |
J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]