-
Previous Article
Asymptotic dynamics of hermitian Riccati difference equations
- DCDS-B Home
- This Issue
-
Next Article
Size estimates for the weighted p-Laplace equation with one measurement
On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas
1. | Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan |
2. | Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan |
In this paper, we study the continuous-time nearest stable matrix problem: given a $ 2\times 2 $ real matrix $ A $, minimize the Frobenius norm of $ A-X $, where $ X $ is a stable matrix. We provide an explicit formula for the global minimizer $ X_* $. The uniqueness of the minimizer is also studied.
References:
[1] |
N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp.
doi: 10.1002/nla.2282. |
[2] |
N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp.
doi: 10.1002/nla.2153. |
[3] |
N. Gillis, M. Karow and P. Sharma,
Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.
doi: 10.1016/j.laa.2019.03.014. |
[4] |
N. Gillis and P. Sharma,
On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.
doi: 10.1016/j.automatica.2017.07.047. |
[5] |
N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989. |
[6] | R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. Google Scholar |
[7] |
V. Mehrmann and P. Van Dooren,
Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.
doi: 10.1137/19M1259092. |
[8] |
V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar |
[9] |
F.-X. Orbandexivry, Y. Nesterov and P. Van Dooren,
Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.
doi: 10.1016/j.automatica.2013.01.053. |
show all references
References:
[1] |
N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp.
doi: 10.1002/nla.2282. |
[2] |
N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp.
doi: 10.1002/nla.2153. |
[3] |
N. Gillis, M. Karow and P. Sharma,
Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.
doi: 10.1016/j.laa.2019.03.014. |
[4] |
N. Gillis and P. Sharma,
On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.
doi: 10.1016/j.automatica.2017.07.047. |
[5] |
N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989. |
[6] | R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. Google Scholar |
[7] |
V. Mehrmann and P. Van Dooren,
Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.
doi: 10.1137/19M1259092. |
[8] |
V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar |
[9] |
F.-X. Orbandexivry, Y. Nesterov and P. Van Dooren,
Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.
doi: 10.1016/j.automatica.2013.01.053. |
[1] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[2] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[5] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[6] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[7] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[8] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[9] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[10] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[14] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[15] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[16] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[17] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[20] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]