April  2021, 26(4): 2025-2035. doi: 10.3934/dcdsb.2020358

On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas

1. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan

2. 

Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan

* Corresponding author: Shih-Feng Shieh

Received  August 2020 Revised  October 2020 Published  December 2020

In this paper, we study the continuous-time nearest stable matrix problem: given a $ 2\times 2 $ real matrix $ A $, minimize the Frobenius norm of $ A-X $, where $ X $ is a stable matrix. We provide an explicit formula for the global minimizer $ X_* $. The uniqueness of the minimizer is also studied.

Citation: Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2025-2035. doi: 10.3934/dcdsb.2020358
References:
[1]

N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp. doi: 10.1002/nla.2282.  Google Scholar

[2]

N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp. doi: 10.1002/nla.2153.  Google Scholar

[3]

N. GillisM. Karow and P. Sharma, Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.  doi: 10.1016/j.laa.2019.03.014.  Google Scholar

[4]

N. Gillis and P. Sharma, On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.  doi: 10.1016/j.automatica.2017.07.047.  Google Scholar

[5]

N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989.  Google Scholar

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.   Google Scholar
[7]

V. Mehrmann and P. Van Dooren, Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.  doi: 10.1137/19M1259092.  Google Scholar

[8]

V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar

[9]

F.-X. OrbandexivryY. Nesterov and P. Van Dooren, Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.  doi: 10.1016/j.automatica.2013.01.053.  Google Scholar

show all references

References:
[1]

N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp. doi: 10.1002/nla.2282.  Google Scholar

[2]

N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp. doi: 10.1002/nla.2153.  Google Scholar

[3]

N. GillisM. Karow and P. Sharma, Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.  doi: 10.1016/j.laa.2019.03.014.  Google Scholar

[4]

N. Gillis and P. Sharma, On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.  doi: 10.1016/j.automatica.2017.07.047.  Google Scholar

[5]

N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989.  Google Scholar

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.   Google Scholar
[7]

V. Mehrmann and P. Van Dooren, Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.  doi: 10.1137/19M1259092.  Google Scholar

[8]

V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar

[9]

F.-X. OrbandexivryY. Nesterov and P. Van Dooren, Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.  doi: 10.1016/j.automatica.2013.01.053.  Google Scholar

[1]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[6]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[10]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[11]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (119)
  • Cited by (0)

[Back to Top]