April  2021, 26(4): 1991-2010. doi: 10.3934/dcdsb.2020362

The spatial dynamics of a Zebra mussel model in river environments

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada

* Corresponding author: Yu Jin

(Dedicated to Professor Sze-Bi Hsu on the occasion of his retirement)

Received  August 2020 Revised  November 2020 Published  December 2020

Fund Project: X.-Q. Zhao's research is supported in part by the NSERC of Canada

Huang et al. [10] developed a hybrid continuous/discrete-time model to describe the persistence and invasion dynamics of Zebra mussels in rivers. They used a net reproductive rate $ R_0 $ to determine population persistence in a bounded domain and estimated spreading speeds by applying the linear determinacy conjecture and using the formula in [16]. Since the associated solution operator is non-monotonic and non-compact, it is nontrivial to rigorously establish these quantities. In this paper, we analyze the spatial dynamics of this model mathematically. We first solve the parabolic equation and rewrite the model into a fully discrete-time model. In a bounded domain, we show that the spectral radius $ \hat{r} $ of the linearized operator can be used to determine population persistence and that the sign of $ \hat{r}-1 $ is the same as that of $ R_0-1 $, which confirms that $ R_0 $ defined in [10] can be used to determine population persistence. In an unbounded domain, we construct two monotonic operators to control the model operator from above and from below and obtain upper and lower bounds of the spreading speeds of the model.

Citation: Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362
References:
[1]

D. T. E. BastvikenN. F. Caraco and J. J. Cole, Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition, Freshwater Biology, 39 (1998), 375-386.  doi: 10.1046/j.1365-2427.1998.00283.x.  Google Scholar

[2] E. Brian Davies, Linear Operators and their Spectra,, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618864.  Google Scholar
[3]

H. Caswell, Matrix Population Models, Sinauer Associates Inc, 2nd edition, 2000. Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, , Springer-Verlag, Berlin, Heidelberg, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Maximum Principles and Applications, , Volume 1 (Partial Differential Equations and Application), World Scientific Pub Co Inc, 2006. doi: 10.1142/9789812774446.  Google Scholar

[6]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM Journal on Mathematical Analysis, 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[7]

D. W. Garton and W. R. Haag, Seasonal reproductive cycles and settlement patterns of Dreissena polymorpha in western Lake Erie, in Zebra Mussels: Biology, Impacts, and Control, T. F. Nalepa and D. W. Schloesser, eds., Lewis Publishers, Boca Raton, FL, 1993, 111-128. Google Scholar

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Search Notes in Mathematics Series, Vol.247, Longman Scientific Technical, Harlow, UK, 1991.  Google Scholar

[9]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integro-difference equations, SIAM Journal on Mathematical Analysis, 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[10]

Q. HuangH. Wang and M. A. Lewis, A hybrid continudous/discrete-time model for invasion dynamics of zebra mussles in rivers, SIAM Journal on Applied Mathematics, 77 (2017), 854-880.  doi: 10.1137/16M1057826.  Google Scholar

[11]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[12]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 61 (2008), 137-138.  doi: 10.1002/cpa.20221.  Google Scholar

[13]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 49 (2017), 3603-3636.  doi: 10.1137/16M1108832.  Google Scholar

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[15]

H. W. MckenzieY. JinJ. Jacobsen and M. A. Lewis, $R_0$ analysis of a spatiotemporal model for a stream population, SIAM Journal on Applied Dynamical Systems, 11 (2012), 567-596.  doi: 10.1137/100802189.  Google Scholar

[16]

M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations, Ecology, 81 (2000), 1613-1628.   Google Scholar

[17]

A. RicciardiF. G. Whoriskey and J. B. Rasmussen, Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River, The Canadian Journal of Fisheries and Aquatic Sciences, 53 (1996), 1434-1444.  doi: 10.1139/f96-068.  Google Scholar

[18]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[19]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[20]

X. Wang and X.-Q. Zhao, Target reproduction numbers for reaction-diffusion population models, Journal of Mathematical Biology, 81 (2020), 625-647.  doi: 10.1007/s00285-020-01523-9.  Google Scholar

[21]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM Journal on Mathematical Analysis, 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[22]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Journal of Mathematical Biology, 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[23]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with non-monotone recruitment functions, Journal of Mathematical Biology, 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[24]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, Journal of Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[25]

R. Wu and X.-Q. Zhao, Spatial invasion of a birth pulse populatoin with nonlocal dispersal, SIAM Journal on Applied Mathematics, 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.  Google Scholar

[26]

X.-Q. Zhao, Dynamical Systems in Population Biology, , second edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1]

D. T. E. BastvikenN. F. Caraco and J. J. Cole, Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition, Freshwater Biology, 39 (1998), 375-386.  doi: 10.1046/j.1365-2427.1998.00283.x.  Google Scholar

[2] E. Brian Davies, Linear Operators and their Spectra,, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618864.  Google Scholar
[3]

H. Caswell, Matrix Population Models, Sinauer Associates Inc, 2nd edition, 2000. Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, , Springer-Verlag, Berlin, Heidelberg, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Maximum Principles and Applications, , Volume 1 (Partial Differential Equations and Application), World Scientific Pub Co Inc, 2006. doi: 10.1142/9789812774446.  Google Scholar

[6]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM Journal on Mathematical Analysis, 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[7]

D. W. Garton and W. R. Haag, Seasonal reproductive cycles and settlement patterns of Dreissena polymorpha in western Lake Erie, in Zebra Mussels: Biology, Impacts, and Control, T. F. Nalepa and D. W. Schloesser, eds., Lewis Publishers, Boca Raton, FL, 1993, 111-128. Google Scholar

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Search Notes in Mathematics Series, Vol.247, Longman Scientific Technical, Harlow, UK, 1991.  Google Scholar

[9]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integro-difference equations, SIAM Journal on Mathematical Analysis, 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[10]

Q. HuangH. Wang and M. A. Lewis, A hybrid continudous/discrete-time model for invasion dynamics of zebra mussles in rivers, SIAM Journal on Applied Mathematics, 77 (2017), 854-880.  doi: 10.1137/16M1057826.  Google Scholar

[11]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[12]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 61 (2008), 137-138.  doi: 10.1002/cpa.20221.  Google Scholar

[13]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 49 (2017), 3603-3636.  doi: 10.1137/16M1108832.  Google Scholar

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[15]

H. W. MckenzieY. JinJ. Jacobsen and M. A. Lewis, $R_0$ analysis of a spatiotemporal model for a stream population, SIAM Journal on Applied Dynamical Systems, 11 (2012), 567-596.  doi: 10.1137/100802189.  Google Scholar

[16]

M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations, Ecology, 81 (2000), 1613-1628.   Google Scholar

[17]

A. RicciardiF. G. Whoriskey and J. B. Rasmussen, Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River, The Canadian Journal of Fisheries and Aquatic Sciences, 53 (1996), 1434-1444.  doi: 10.1139/f96-068.  Google Scholar

[18]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[19]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[20]

X. Wang and X.-Q. Zhao, Target reproduction numbers for reaction-diffusion population models, Journal of Mathematical Biology, 81 (2020), 625-647.  doi: 10.1007/s00285-020-01523-9.  Google Scholar

[21]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM Journal on Mathematical Analysis, 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[22]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Journal of Mathematical Biology, 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[23]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with non-monotone recruitment functions, Journal of Mathematical Biology, 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.  Google Scholar

[24]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, Journal of Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[25]

R. Wu and X.-Q. Zhao, Spatial invasion of a birth pulse populatoin with nonlocal dispersal, SIAM Journal on Applied Mathematics, 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.  Google Scholar

[26]

X.-Q. Zhao, Dynamical Systems in Population Biology, , second edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[1]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[2]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[3]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[6]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[7]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[8]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[9]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[15]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[18]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[19]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[20]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (69)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]