[1]
|
S. A. Campbell, Time delays in neural systems., In Handbook of Brain Connectivity (eds A. R. McIntosh & V. K. Jirsa), 65–90, Berlin, Germany: Springer, 2007.
doi: 10.1007/978-3-540-71512-2_2.
|
[2]
|
S. S. Chen, C. Y. Cheng and Y. R. Lin, Application of a two-dimensional Hinmarsh-Rose type model for bifurcation analysis, Int. J. Bifurcation and Chaos, 23 (2013), 1350055, 21pp.
doi: 10.1142/S0218127413500557.
|
[3]
|
S. S. Chen and C. Y. Cheng, Delay-induced mixed-mode oscillations in a 2d HindMarsh-Rose type model with recurrent neural feedback, Discrete Conti. Dyn. Sys.-B, 21 (2016), 37-53.
doi: 10.3934/dcdsb.2016.21.37.
|
[4]
|
K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592-627.
doi: 10.1016/0022-247X(82)90243-8.
|
[5]
|
S. Coombes and C. Laing, Delays in activity-based neural networks, Phil. Trans. R. Soc. A, 367 (2009), 1117-1129.
doi: 10.1098/rsta.2008.0256.
|
[6]
|
S. Ditlevsen and P. Greenwood, The Morris-Lecar neuron model embeds a leaky integrate-and-fire model, J. Math. Biol., 67 (2013), 239-259.
doi: 10.1007/s00285-012-0552-7.
|
[7]
|
G. Dumont and J. Henry, Synchronization of an excitatory integrate-and-fire neural network, Bull. Math. Biol., 75 (2013), 629-648.
doi: 10.1007/s11538-013-9823-8.
|
[8]
|
N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk and N. Brunel, How spike generation mechanisms determine the neuronal response to fluctuating inputs, J. Neurosci, 23 (2003), 11628-11640.
doi: 10.1523/JNEUROSCI.23-37-11628.2003.
|
[9]
|
E. Foxall, R. Edwards, S. Ibrahim and P. van den Driessche, A contraction argument for two-dimensional spiking neuron models, SIAM J. Appl. Dyn. Sys., 11 (2012), 540-566.
doi: 10.1137/10081811X.
|
[10]
|
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Application of Hopf Bifurcation, Cambridge Univ. Press, Cambridge, 1981.
|
[11]
|
E. M. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Networks, 15 (2004), 1063-1070.
doi: 10.1109/TNN.2004.832719.
|
[12]
|
W. Nicola and S. A. Campbell, Bifurcations of large networks of two-dimensional integrate and fire neurons, J. Comp. Neurosci., 35 (2013), 87-108.
doi: 10.1007/s10827-013-0442-z.
|
[13]
|
L. Prignano, O. Sagarra and A. Díaz-Guilera, Tuning synchronization of integrate-and-fire oscillators through mobility, Phys. Rev. Lett., 110 (2013), 114101.
doi: 10.1103/PhysRevLett.110.114101.
|
[14]
|
I. Ratas and K. Pyragas, Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling, Phys. Rev. E, 98 (2018), 052224, 11pp.
doi: 10.1103/physreve.98.052224.
|
[15]
|
S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quart. Appl. Math., 59 (2001), 159-173.
doi: 10.1090/qam/1811101.
|
[16]
|
M. A. Schwemmer and T. J. Lewis, Bistability in a leaky integrate-and-fire neuron with a passive dendrite, SIAM J. Appl. Dyn. Sys., 11 (2012), 507-539.
doi: 10.1137/110847354.
|
[17]
|
E. Shlizerman and P. Holmes, Neural dynamics, bifurcations and firing rates in a quadratic integrate-and-fire model with a recovery variable. I: Deterministic behavior, Neural Comput., 24 (2012), 2078-2118.
doi: 10.1162/NECO_a_00308.
|
[18]
|
J. Touboul, Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons, SIAM J. Appl. Math., 68 (2008), 1045-1079.
doi: 10.1137/070687268.
|
[19]
|
J. Touboul and R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biolog. Cybernet., 99 (2008), 319-334.
doi: 10.1007/s00422-008-0267-4.
|
[20]
|
J. Touboul, Importance of the cutoff value in the quadratic adaptive integrate-and-fire model, Neural Comput., 21 (2009), 2114-2122.
doi: 10.1162/neco.2009.09-08-853.
|
[21]
|
J. Touboul and R. Brette, Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J. Appl. Dyn. Sys., 8 (2009), 1462-1506.
doi: 10.1137/080742762.
|
[22]
|
G. Zheng and A. Tonnelier, Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation, Cogn. Neurodyn., 3 (2009), 197-204.
doi: 10.1007/s11571-008-9069-6.
|