
-
Previous Article
Spatial pattern formation in activator-inhibitor models with nonlocal dispersal
- DCDS-B Home
- This Issue
-
Next Article
Recent developments on a singular predator-prey model
Traveling waves in quadratic autocatalytic systems with complexing agent
1. | Department of Applied Mathematics, National Chiao Tung University, No. 1001, Ta Hsueh Road, Hsinchu 300093, Taiwan |
2. | Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland |
The quadratic autocatalytic reaction forms a key step in a number of chemical reaction systems, and traveling waves are observed in such systems. In this study, we investigate the effect of complexation reactions on traveling waves in the quadratic autocatalytic reaction system. More precisely, under the assumption that the complexation reaction is fast relative to the autocatalytic reaction, we show that the governing system is reduced to a two-component reaction-diffusion system with density-dependent diffusivity. Further, the numerical evidence suggests that for some parameter values, a traveling wave solution of this reduced two-component system is nonlinearly selected. This is contrast to that associated with the quadratic autocatalytic reaction (without complexation reactions).
References:
[1] |
J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24.
doi: 10.1098/rsta.1991.0001. |
[2] |
J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372.
doi: 10.1090/qam/1162280. |
[3] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982. |
[4] |
B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38.
doi: 10.1007/s00285-009-0323-2. |
[5] |
B. Kazmierczak and V. Volpert,
Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.
doi: 10.1142/S0218202508002899. |
[6] |
J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132.
doi: 10.1023/A: 1019124231138. |
[7] |
J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549.
doi: 10.1093/imamat/hxh045. |
[8] |
J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar |
[9] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[10] |
J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356.
doi: 10.1007/BF00128907. |
show all references
References:
[1] |
J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24.
doi: 10.1098/rsta.1991.0001. |
[2] |
J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372.
doi: 10.1090/qam/1162280. |
[3] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982. |
[4] |
B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38.
doi: 10.1007/s00285-009-0323-2. |
[5] |
B. Kazmierczak and V. Volpert,
Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.
doi: 10.1142/S0218202508002899. |
[6] |
J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132.
doi: 10.1023/A: 1019124231138. |
[7] |
J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549.
doi: 10.1093/imamat/hxh045. |
[8] |
J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar |
[9] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[10] |
J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356.
doi: 10.1007/BF00128907. |


[1] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[2] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[3] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[6] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[7] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[8] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[9] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[10] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[11] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[12] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[13] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[14] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]