April  2021, 26(4): 1827-1842. doi: 10.3934/dcdsb.2020364

Traveling waves in quadratic autocatalytic systems with complexing agent

1. 

Department of Applied Mathematics, National Chiao Tung University, No. 1001, Ta Hsueh Road, Hsinchu 300093, Taiwan

2. 

Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland

* Corresponding author: Bogdan Kazmierczak

Dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas

Received  October 06, 2020 Revised  October 25, 2020 Published  December 2020

The quadratic autocatalytic reaction forms a key step in a number of chemical reaction systems, and traveling waves are observed in such systems. In this study, we investigate the effect of complexation reactions on traveling waves in the quadratic autocatalytic reaction system. More precisely, under the assumption that the complexation reaction is fast relative to the autocatalytic reaction, we show that the governing system is reduced to a two-component reaction-diffusion system with density-dependent diffusivity. Further, the numerical evidence suggests that for some parameter values, a traveling wave solution of this reduced two-component system is nonlinearly selected. This is contrast to that associated with the quadratic autocatalytic reaction (without complexation reactions).

Citation: Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1827-1842. doi: 10.3934/dcdsb.2020364
References:
[1]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24. doi: 10.1098/rsta.1991.0001.  Google Scholar

[2]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372. doi: 10.1090/qam/1162280.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38. doi: 10.1007/s00285-009-0323-2.  Google Scholar

[5]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.  doi: 10.1142/S0218202508002899.  Google Scholar

[6]

J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132. doi: 10.1023/A: 1019124231138.  Google Scholar

[7]

J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549. doi: 10.1093/imamat/hxh045.  Google Scholar

[8]

J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356. doi: 10.1007/BF00128907.  Google Scholar

show all references

References:
[1]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24. doi: 10.1098/rsta.1991.0001.  Google Scholar

[2]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372. doi: 10.1090/qam/1162280.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38. doi: 10.1007/s00285-009-0323-2.  Google Scholar

[5]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.  doi: 10.1142/S0218202508002899.  Google Scholar

[6]

J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132. doi: 10.1023/A: 1019124231138.  Google Scholar

[7]

J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549. doi: 10.1093/imamat/hxh045.  Google Scholar

[8]

J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356. doi: 10.1007/BF00128907.  Google Scholar

Figure 1.  Time-evolution of the solution $ (A, B) $ of system (1.9) with $ L = 1600 $. The initial data is that $ A_0(x) = 1\; (0 \leq x \leq L) $, and $ B_0(x) = 0\; (20 \leq x \leq L) $ and $ 1\; (0 \leq x < 20) $. Here the parameters are $ d = 2, K = 2 $, and $ \sigma = 4 $
Figure 2.  The dependence of wave speed $ v_m $ on $ \sigma $. The parameter $ K = 2 $ and the diffusivity parameter $ d $ is $ 0.5 $, $ 1 $, $ 2 $ and $ 4 $ for panels (a), (b), (c) and (d), respectively
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[3]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[4]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[5]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[6]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[7]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[8]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[9]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[10]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[11]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[12]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]