• Previous Article
    The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
  • DCDS-B Home
  • This Issue
  • Next Article
    On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas
April  2021, 26(4): 2037-2053. doi: 10.3934/dcdsb.2020365

Asymptotic dynamics of hermitian Riccati difference equations

1. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan

2. 

Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan

* Corresponding author: Huey-Er Lin

(dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas)

Received  October 2020 Revised  November 2020 Published  December 2020

In this paper, we consider the hermitian Riccati difference equations. Analogous to a Riccati differential equation, there is a connection between a Riccati difference equation and its associated linear difference equation. Based on the linear difference equation, we can obtain an explicit representation for the solution of the Riccati difference equation and define the extended solution. Further, we can characterize the asymptotic state of the extended solution and the rate of convergence. Constant equilibrium solutions, periodic solutions and closed limit cycles are exhibited in the investigation of asymptotic behavior of the hermitian Riccati difference equations.

Citation: Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations: In Control and Systems Theory, Birkhauser, Basel, 2003. doi: 10.1007/978-3-0348-8081-7.  Google Scholar

[2]

R. R. Bitmead and M. R. Gevers, Riccati Difference and Differential Equations: Convergence, Monotonicity and Stability, In: S. Bittanti et al. (Ed.) The Riccati Equation, Berlin, Springer Verlag, 1991.  Google Scholar

[3]

P. E. Caines and D. Q. Mayne, On the discrete time matrix Riccati equation of optimal control, Int. J. Control, 12 (1970), 785-794.  doi: 10.1080/00207177008931892.  Google Scholar

[4]

S. W. ChanG. C. Goodwin and K. S. Sin, Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems, IEEE Trans. Automal. Contr., 29 (1984), 110-118.  doi: 10.1109/TAC.1984.1103465.  Google Scholar

[5]

D. J. Clement and B. D. O. Anderson, Polynomial factorization via the Riccati equation, SIAM J. Appl. Math., 31 (1976), 179-205.  doi: 10.1137/0131017.  Google Scholar

[6]

G. Freiling and V. Ionescu, Nonsymmetric discrete-time difference and algebraic Riccati equations: Some representation formulae and comments, Dynam Systems Appl., 8 (1999), 421-437.   Google Scholar

[7]

G. Freiling and A. Hochhaus, Convergence and existence results for continuous- and discrete-time Riccati equations, Result.Math., 42 (2002), 252-276.  doi: 10.1007/BF03322854.  Google Scholar

[8]

A. Gorodnik, Dynamical Systems and Ergodic Theory, Lecture Notes. Google Scholar

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.  Google Scholar
[10]

V. Kučera, The discrete Riccati equation of optimal control, Kybernetika, 8 (1972), 430-447.   Google Scholar

[11]

Y. C. KuoH. E. Lin and S. F. Shieh, Time-asymptotic dynamics of hermitian riccati differential equations, Taiwanese J. Math., 24 (2020), 131-158.  doi: 10.11650/tjm/190605.  Google Scholar

[12] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford, Clarendon Press, 1995.   Google Scholar
[13]

W. W. LinV. Mehrmann and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra and Appl., 302/303 (1999), 469-533.  doi: 10.1016/S0024-3795(99)00191-3.  Google Scholar

[14]

H. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation, J. Math. Est. and Contr., 5 (1995), 445-457.   Google Scholar

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations: In Control and Systems Theory, Birkhauser, Basel, 2003. doi: 10.1007/978-3-0348-8081-7.  Google Scholar

[2]

R. R. Bitmead and M. R. Gevers, Riccati Difference and Differential Equations: Convergence, Monotonicity and Stability, In: S. Bittanti et al. (Ed.) The Riccati Equation, Berlin, Springer Verlag, 1991.  Google Scholar

[3]

P. E. Caines and D. Q. Mayne, On the discrete time matrix Riccati equation of optimal control, Int. J. Control, 12 (1970), 785-794.  doi: 10.1080/00207177008931892.  Google Scholar

[4]

S. W. ChanG. C. Goodwin and K. S. Sin, Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems, IEEE Trans. Automal. Contr., 29 (1984), 110-118.  doi: 10.1109/TAC.1984.1103465.  Google Scholar

[5]

D. J. Clement and B. D. O. Anderson, Polynomial factorization via the Riccati equation, SIAM J. Appl. Math., 31 (1976), 179-205.  doi: 10.1137/0131017.  Google Scholar

[6]

G. Freiling and V. Ionescu, Nonsymmetric discrete-time difference and algebraic Riccati equations: Some representation formulae and comments, Dynam Systems Appl., 8 (1999), 421-437.   Google Scholar

[7]

G. Freiling and A. Hochhaus, Convergence and existence results for continuous- and discrete-time Riccati equations, Result.Math., 42 (2002), 252-276.  doi: 10.1007/BF03322854.  Google Scholar

[8]

A. Gorodnik, Dynamical Systems and Ergodic Theory, Lecture Notes. Google Scholar

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.  Google Scholar
[10]

V. Kučera, The discrete Riccati equation of optimal control, Kybernetika, 8 (1972), 430-447.   Google Scholar

[11]

Y. C. KuoH. E. Lin and S. F. Shieh, Time-asymptotic dynamics of hermitian riccati differential equations, Taiwanese J. Math., 24 (2020), 131-158.  doi: 10.11650/tjm/190605.  Google Scholar

[12] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford, Clarendon Press, 1995.   Google Scholar
[13]

W. W. LinV. Mehrmann and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra and Appl., 302/303 (1999), 469-533.  doi: 10.1016/S0024-3795(99)00191-3.  Google Scholar

[14]

H. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation, J. Math. Est. and Contr., 5 (1995), 445-457.   Google Scholar

[1]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[2]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[3]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[16]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[20]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]