
-
Previous Article
A theoretical approach to understanding rumor propagation dynamics in a spatially heterogeneous environment
- DCDS-B Home
- This Issue
-
Next Article
Effective reduction of a three-dimensional circadian oscillator model
Stable transition layers in an unbalanced bistable equation
Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil |
In this paper we are concerned with the existence of stable stationary solutions for the problem $ u_t = \epsilon^2(k_1^2(x) u_x)_x+k_2^2(x)g(u,x) $, $ (t,x)\in\mathbb{R}^+\times (0,1) $ subject to Neumann boundary condition. We suppose that $ k_1,k_2\in C^1(0,1) $ are positive functions and $ g $ is an unbalanced bistable function. We prove the existence of a family of stable stationary solutions developing internal transition layers in a specific sub-interval of $ (0,1) $. For this, we provide a general variational method inspired by the $ \Gamma $-convergence theory.
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |
show all references
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |

[1] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[2] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[3] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[4] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[5] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[6] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[7] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[8] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[9] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[10] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[15] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[16] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[19] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[20] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]