
-
Previous Article
Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises
- DCDS-B Home
- This Issue
-
Next Article
Mathematical analysis of a three-tiered food-web in the chemostat
Stable transition layers in an unbalanced bistable equation
Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil |
In this paper we are concerned with the existence of stable stationary solutions for the problem $ u_t = \epsilon^2(k_1^2(x) u_x)_x+k_2^2(x)g(u,x) $, $ (t,x)\in\mathbb{R}^+\times (0,1) $ subject to Neumann boundary condition. We suppose that $ k_1,k_2\in C^1(0,1) $ are positive functions and $ g $ is an unbalanced bistable function. We prove the existence of a family of stable stationary solutions developing internal transition layers in a specific sub-interval of $ (0,1) $. For this, we provide a general variational method inspired by the $ \Gamma $-convergence theory.
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |
show all references
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |

[1] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[2] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[3] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[4] |
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 |
[5] |
Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063 |
[6] |
Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255 |
[7] |
Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631 |
[8] |
Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 |
[9] |
Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147 |
[10] |
Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827 |
[11] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[12] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[13] |
Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237 |
[14] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[15] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[16] |
Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269 |
[17] |
Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 |
[18] |
Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079 |
[19] |
Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037 |
[20] |
Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems and Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]