October  2021, 26(10): 5641-5660. doi: 10.3934/dcdsb.2020371

Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises

School of Mathematics and Statistics, Yangtze Normal University, Chongqing, 408100, China

* Corresponding author: Jiangtao Yang

Received  July 2020 Published  October 2021 Early access  December 2020

Fund Project: The author is supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202001401)

This paper considers a stochastic single-species model with Lévy noises and time periodic coefficients. By Lyapunov functions and stochastic estimates, the threshold conditions between the time-average persistence in probability and extinction for the model are derived where Lévy noises play an important role in persistence and extinction of populations. It is shown that the time-average persistence in probability of the model implies the existence and uniqueness of positive periodic solution and the existence and uniqueness of periodic measure of the model. An example and its numerical simulations are given to verify the effectiveness of the theoretical results.

Citation: Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371
References:
[1] D. Applebaum, Lévy Processes and Stochastics Calculus, 2$^nd$ edition, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511809781.
[2]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl, 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.

[4]

B.-E. BerrhaziM. E. FatiniT. Caraballo and R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2415-2431.  doi: 10.3934/dcdsb.2018057.

[5]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman Hall/CRC, 2004.

[6]

J. CyrP. Nguyen and R. Temam, Stochastic one layer shallow water equations with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3765-3818.  doi: 10.3934/dcdsb.2018331.

[7]

J. M. Cushing, Periodic time-dependent predator-prey system, SIAM J. Appl. Math., 32 (1977), 82-95.  doi: 10.1137/0132006.

[8] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511662829.
[9]

M. Deng, Dynamics of a stochastic population model with Allee effect and Lévy jumps, Physica A, 531 (2019), 121745, 11 pp. doi: 10.1016/j.physa.2019.121745.

[10] J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015. 
[11]

S. N. EvansP. L. RalphS. J. Schreiber and A. Sen, Stochastic population growth in spatially heterogeneous environments, J. Math. Biol., 66 (2013), 423-476.  doi: 10.1007/s00285-012-0514-0.

[12]

C. Feng and H. Zhao, Random periodic processes, periodic measures and ergodicity, J. Differ. Equations, 269 (2020), 7382-7428.  doi: 10.1016/j.jde.2020.05.034.

[13]

T. G. Hallam and Z. E. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339.  doi: 10.1007/BF00275641.

[14]

P. R. Halmos, Measure Theory, Springer-Verlag, New York, 1970. doi: 10.1007/978-1-4684-9440-2.

[15]

A. Hening and D. H. Nguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.

[16]

G. Hu and Y. Li, Asymptotic behaviors of stochastic periodic differential equations with Markovian switching, Appl. Math. Compt., 264 (2015), 403-416.  doi: 10.1016/j.amc.2015.04.033.

[17]

D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.  doi: 10.1016/j.jmaa.2004.08.027.

[18]

D. JiangN. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.  doi: 10.1016/j.jmaa.2007.08.014.

[19]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[20]

D. LiJ. Cui and G. Song, Permanence and extinction for a single-species systems with jump-diffusion, J. Math. Anal. Appl., 430 (2015), 438-464.  doi: 10.1016/j.jmaa.2015.04.050.

[21]

D. Li and D. Xu, Periodic solutions of stochastic delay differential equations and applications to logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181.  doi: 10.4134/JKMS.2013.50.6.1165.

[22]

R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228.  doi: 10.1080/17442508008833146.

[23]

M. Liu and C. Z. Bai, On a stochastic delayed predator-prey model with Lévy jumps, Appl. Math. Comput., 228 (2014), 563-570.  doi: 10.1016/j.amc.2013.12.026.

[24]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750-763.  doi: 10.1016/j.jmaa.2013.07.078.

[25]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.

[26]

Q. Liu and Q. Chen, Asymptotic behavior of a stochastic non-autonomous predator-prey system with jumps, Appl. Math. Comput., 271 (2015), 418-428.  doi: 10.1016/j.amc.2015.08.040.

[27]

Q. Liu and D. Jiang, Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation, J. Nonlinear Sci., 28 (2018), 423-442.  doi: 10.1007/s00332-017-9413-2.

[28]

Q. LiuD. JiangN. ShiT. Hayat and A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 78-90.  doi: 10.1016/j.cnsns.2016.05.003.

[29] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1973. 
[30]

D. Nguyen and G. G. Yin, Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differ. Equations, 262 (2017), 1192-1225.  doi: 10.1016/j.jde.2016.10.005.

[31]

S. J. SchreiberM. Benaim and K. A. S. Atchadé, Persistence in fluctuating environments, J. Math. Biol., 62 (2011), 655-683.  doi: 10.1007/s00285-010-0349-5.

[32]

H. WangC. Du and M. Liu, Dynamics of a stochastic service resource mutualism model with Lévy noises and harvesting, J. Nonlinear Sci. Appl., 10 (2017), 6205-6218.  doi: 10.22436/jnsa.010.12.07.

[33]

Y. Wang and Z. Liu, Almost periodic solutions for stochastic differential equations with Lévy noise, Nonlinearity, 25 (2012), 2803-2821.  doi: 10.1088/0951-7715/25/10/2803.

[34]

J. Yang, Threshold behavior in a stochastic predator-prey model with general functional response, Physica A, 551 (2020), 124610 12 pp. doi: 10.1016/j.physa.2020.124610.

[35]

B. G. Zhang and K. Gopalsamy, On the periodic solution of $n$-dimensional stochastic population models, Stoc. Anal. Appl., 18 (2000), 323-331.  doi: 10.1080/07362990008809671.

[36]

Q. ZhangD. JiangY. Zhao and D. O'Regan, Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps, Nonlinear Anal. Hybrid Syst., 24 (2017), 1-12.  doi: 10.1016/j.nahs.2016.10.005.

[37]

X. ZhangK. Wang and D. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242.  doi: 10.1016/j.jmaa.2015.04.090.

[38]

Y. Zhao and S. Yuan, Stability in distribution of a stochastic hybrid competitive lotka-volterra model with lévy jumps, Chaos Solitons Fract., 85 (2016), 98-109.  doi: 10.1016/j.chaos.2016.01.015.

[39]

X. Zou and K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1557-1568.  doi: 10.1016/j.cnsns.2013.09.010.

[40]

L. ZuD. JiangD. O'Regan and B. Ge, Periodic solution for a non-autonomous Lotka-Volterra predator-prey model with random perturbation, J. Math. Anal. Appl., 430 (2015), 428-437.  doi: 10.1016/j.jmaa.2015.04.058.

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastics Calculus, 2$^nd$ edition, Cambridge University Press, 2009.  doi: 10.1017/CBO9780511809781.
[2]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl, 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.

[4]

B.-E. BerrhaziM. E. FatiniT. Caraballo and R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2415-2431.  doi: 10.3934/dcdsb.2018057.

[5]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman Hall/CRC, 2004.

[6]

J. CyrP. Nguyen and R. Temam, Stochastic one layer shallow water equations with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3765-3818.  doi: 10.3934/dcdsb.2018331.

[7]

J. M. Cushing, Periodic time-dependent predator-prey system, SIAM J. Appl. Math., 32 (1977), 82-95.  doi: 10.1137/0132006.

[8] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511662829.
[9]

M. Deng, Dynamics of a stochastic population model with Allee effect and Lévy jumps, Physica A, 531 (2019), 121745, 11 pp. doi: 10.1016/j.physa.2019.121745.

[10] J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015. 
[11]

S. N. EvansP. L. RalphS. J. Schreiber and A. Sen, Stochastic population growth in spatially heterogeneous environments, J. Math. Biol., 66 (2013), 423-476.  doi: 10.1007/s00285-012-0514-0.

[12]

C. Feng and H. Zhao, Random periodic processes, periodic measures and ergodicity, J. Differ. Equations, 269 (2020), 7382-7428.  doi: 10.1016/j.jde.2020.05.034.

[13]

T. G. Hallam and Z. E. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339.  doi: 10.1007/BF00275641.

[14]

P. R. Halmos, Measure Theory, Springer-Verlag, New York, 1970. doi: 10.1007/978-1-4684-9440-2.

[15]

A. Hening and D. H. Nguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.

[16]

G. Hu and Y. Li, Asymptotic behaviors of stochastic periodic differential equations with Markovian switching, Appl. Math. Compt., 264 (2015), 403-416.  doi: 10.1016/j.amc.2015.04.033.

[17]

D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.  doi: 10.1016/j.jmaa.2004.08.027.

[18]

D. JiangN. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.  doi: 10.1016/j.jmaa.2007.08.014.

[19]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[20]

D. LiJ. Cui and G. Song, Permanence and extinction for a single-species systems with jump-diffusion, J. Math. Anal. Appl., 430 (2015), 438-464.  doi: 10.1016/j.jmaa.2015.04.050.

[21]

D. Li and D. Xu, Periodic solutions of stochastic delay differential equations and applications to logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181.  doi: 10.4134/JKMS.2013.50.6.1165.

[22]

R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228.  doi: 10.1080/17442508008833146.

[23]

M. Liu and C. Z. Bai, On a stochastic delayed predator-prey model with Lévy jumps, Appl. Math. Comput., 228 (2014), 563-570.  doi: 10.1016/j.amc.2013.12.026.

[24]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750-763.  doi: 10.1016/j.jmaa.2013.07.078.

[25]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.

[26]

Q. Liu and Q. Chen, Asymptotic behavior of a stochastic non-autonomous predator-prey system with jumps, Appl. Math. Comput., 271 (2015), 418-428.  doi: 10.1016/j.amc.2015.08.040.

[27]

Q. Liu and D. Jiang, Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation, J. Nonlinear Sci., 28 (2018), 423-442.  doi: 10.1007/s00332-017-9413-2.

[28]

Q. LiuD. JiangN. ShiT. Hayat and A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 78-90.  doi: 10.1016/j.cnsns.2016.05.003.

[29] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1973. 
[30]

D. Nguyen and G. G. Yin, Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differ. Equations, 262 (2017), 1192-1225.  doi: 10.1016/j.jde.2016.10.005.

[31]

S. J. SchreiberM. Benaim and K. A. S. Atchadé, Persistence in fluctuating environments, J. Math. Biol., 62 (2011), 655-683.  doi: 10.1007/s00285-010-0349-5.

[32]

H. WangC. Du and M. Liu, Dynamics of a stochastic service resource mutualism model with Lévy noises and harvesting, J. Nonlinear Sci. Appl., 10 (2017), 6205-6218.  doi: 10.22436/jnsa.010.12.07.

[33]

Y. Wang and Z. Liu, Almost periodic solutions for stochastic differential equations with Lévy noise, Nonlinearity, 25 (2012), 2803-2821.  doi: 10.1088/0951-7715/25/10/2803.

[34]

J. Yang, Threshold behavior in a stochastic predator-prey model with general functional response, Physica A, 551 (2020), 124610 12 pp. doi: 10.1016/j.physa.2020.124610.

[35]

B. G. Zhang and K. Gopalsamy, On the periodic solution of $n$-dimensional stochastic population models, Stoc. Anal. Appl., 18 (2000), 323-331.  doi: 10.1080/07362990008809671.

[36]

Q. ZhangD. JiangY. Zhao and D. O'Regan, Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps, Nonlinear Anal. Hybrid Syst., 24 (2017), 1-12.  doi: 10.1016/j.nahs.2016.10.005.

[37]

X. ZhangK. Wang and D. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242.  doi: 10.1016/j.jmaa.2015.04.090.

[38]

Y. Zhao and S. Yuan, Stability in distribution of a stochastic hybrid competitive lotka-volterra model with lévy jumps, Chaos Solitons Fract., 85 (2016), 98-109.  doi: 10.1016/j.chaos.2016.01.015.

[39]

X. Zou and K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1557-1568.  doi: 10.1016/j.cnsns.2013.09.010.

[40]

L. ZuD. JiangD. O'Regan and B. Ge, Periodic solution for a non-autonomous Lotka-Volterra predator-prey model with random perturbation, J. Math. Anal. Appl., 430 (2015), 428-437.  doi: 10.1016/j.jmaa.2015.04.058.

Figure 1.  Dynamical behaviors of model (46) with $ c(t) = 0.85+0.75\sin t-\int_{\mathbb{Z}}h(t,z)\pi(dz) $: (a) $ h = 0.4 $; (b) $ h = 2 $. Other parameters are given by (47)
Figure 2.  Dynamical behaviors of model (46) with $ c(t) = 0.85+0.75\sin t $: (a) $ h = 0.4 $; (b) $ h = -0.6 $. Other parameters are given by (47)
[1]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[2]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[3]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial and Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[4]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[5]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[6]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2639-2667. doi: 10.3934/jimo.2020087

[7]

Isabel Coelho, Carlota Rebelo, Elisa Sovrano. Extinction or coexistence in periodic Kolmogorov systems of competitive type. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5743-5764. doi: 10.3934/dcds.2021094

[8]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[9]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[10]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[11]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[12]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

[13]

Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241

[14]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[15]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[16]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[17]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[18]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[19]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[20]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (262)
  • HTML views (302)
  • Cited by (0)

Other articles
by authors

[Back to Top]