doi: 10.3934/dcdsb.2020376

Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise

1. 

Hunan Province Cooperative Innovation Center for the Construction, and Development of Dongting Lake Ecological Economic Zone & College of Mathematics and Physics Science, Hunan University of Arts and Science, Changde, 415000, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410114, China

4. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

* Corresponding author: Mingji Zhang

Received  June 2020 Published  December 2020

We examine the asymptotic behavior of the non-autonomous non-local fractional stochastic reaction-diffusion equations on $ \mathbb{R}^{N} $ with the nonlinearity $ f $ satisfying the polynomial growth of arbitrary order $ p-1 $ $ (p\geq2) $. We first establish a Nash-Moser-Alikakos type a priori estimate for the difference of solutions near the initial time. Then, we prove that the solution process is continuous from $ L^{2}(\mathbb{R}^{N}) $ to $ H^{s}(\mathbb{R}^{N}) $ with respect to initial data for $ s\in(0, 1) $. As an application of the higher-order integrability and the continuity, we obtain the pullback $ \mathcal{D} $-random attractors in $ L^{p}(\mathbb{R}^{N}) $ and $ H^{s}(\mathbb{R}^{N}) $, respectively. This is a natural and necessary extension of current existing results to further understand the dynamics of the underlying problem.

Citation: Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020376
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[4]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical system, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009) 845–869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[7]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[8]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst, 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[10]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.   Google Scholar

[13]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[14]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[15]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[16]

A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for Infinite-Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, Vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[17]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, AMS, Providence, RI, 2002.  Google Scholar

[18]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[19]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779, Springer, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[20]

H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[21]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[22]

H. CrauelG. Dimitroff and M. Scheutzow, Criteria for strong and weak random attractors, J. Dynam. Differential Equations, 21 (2009), 233-247.  doi: 10.1007/s10884-009-9135-8.  Google Scholar

[23]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[24]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474.  doi: 10.1023/A:1022605313961.  Google Scholar

[25]

H. CrauelP. E. Kloeden and J. Real, Stochastic partial differential equations with additive noise on time-varying domains, Bol. Soc. Esp. Mat. Apl. SeMA, 51 (2010), 41-48.  doi: 10.1007/bf03322552.  Google Scholar

[26]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[27]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718.  doi: 10.1016/j.jde.2018.03.011.  Google Scholar

[28]

H. Cui and P. E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.  doi: 10.1016/j.jde.2018.07.028.  Google Scholar

[29]

J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.  doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar

[30]

J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331.  doi: 10.1007/s00205-006-0429-2.  Google Scholar

[31]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[32]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^{n}$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[33]

A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[34]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Comm. Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[35]

B. GuoY. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468-477.  doi: 10.1016/j.amc.2008.07.003.  Google Scholar

[36]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 1–9. doi: 10.1063/1.2235026.  Google Scholar

[37]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[38]

G. Karch, Nonlinear evolution equations with anomalous diffusion: Qualitative properties of solutions to partial differential equations, J. Nečas Cent. Math. Model. Lect. Notes, vol. 5, Matfyzpress, Prague, 2009, 25–68.  Google Scholar

[39]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[40]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, vol. 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[41]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 1–7. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[42]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[43]

N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. doi: 10.1142/10541.  Google Scholar

[44]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[45]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^{n}$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[46]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.  Google Scholar

[47]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[48]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces, Appl. Anal., 92 (2013), 1074-1084.  doi: 10.1080/00036811.2011.649733.  Google Scholar

[49]

A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4, Elsevier/North-Holland, Amsterdam, 2008,103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[50]

E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium Phenomena, II, 1–121, North-Holland, Amsterdam, 1984.  Google Scholar

[51]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[52]

M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[53]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (B), 133 (1986), 425-430.   Google Scholar

[54]

X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.  doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar

[55] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[56]

S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat, Potenza, 2007,217–226.  Google Scholar

[57]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar

[58]

M. F. ShlesingerG. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37.   Google Scholar

[59]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[60]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[61]

B. Tang, Regularity of pullback random attractors for stochastic Fitzhugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[62]

W. Tan and C. Sun, Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 6035-6067.  doi: 10.3934/dcds.2017260.  Google Scholar

[63]

V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.   Google Scholar

[64]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[65]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.  Google Scholar

[66]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[67]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[68]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[69]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002) 461–580. doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[70] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2008.   Google Scholar
[71]

G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.  doi: 10.1063/1.1355358.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[4]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical system, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009) 845–869. doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[7]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[8]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst, 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[10]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.   Google Scholar

[13]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[14]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[15]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[16]

A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for Infinite-Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, Vol. 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[17]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, AMS, Providence, RI, 2002.  Google Scholar

[18]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[19]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779, Springer, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[20]

H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[21]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[22]

H. CrauelG. Dimitroff and M. Scheutzow, Criteria for strong and weak random attractors, J. Dynam. Differential Equations, 21 (2009), 233-247.  doi: 10.1007/s10884-009-9135-8.  Google Scholar

[23]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[24]

H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems, J. Dynam. Differential Equations, 10 (1998), 449-474.  doi: 10.1023/A:1022605313961.  Google Scholar

[25]

H. CrauelP. E. Kloeden and J. Real, Stochastic partial differential equations with additive noise on time-varying domains, Bol. Soc. Esp. Mat. Apl. SeMA, 51 (2010), 41-48.  doi: 10.1007/bf03322552.  Google Scholar

[26]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.  doi: 10.1142/S0219493711003292.  Google Scholar

[27]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718.  doi: 10.1016/j.jde.2018.03.011.  Google Scholar

[28]

H. Cui and P. E. Kloeden, Invariant forward attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.  doi: 10.1016/j.jde.2018.07.028.  Google Scholar

[29]

J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.  doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar

[30]

J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331.  doi: 10.1007/s00205-006-0429-2.  Google Scholar

[31]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[32]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^{n}$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[33]

A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[34]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Comm. Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[35]

B. GuoY. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468-477.  doi: 10.1016/j.amc.2008.07.003.  Google Scholar

[36]

X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 1–9. doi: 10.1063/1.2235026.  Google Scholar

[37]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[38]

G. Karch, Nonlinear evolution equations with anomalous diffusion: Qualitative properties of solutions to partial differential equations, J. Nečas Cent. Math. Model. Lect. Notes, vol. 5, Matfyzpress, Prague, 2009, 25–68.  Google Scholar

[39]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[40]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, vol. 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[41]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 1–7. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[42]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[43]

N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. doi: 10.1142/10541.  Google Scholar

[44]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[45]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^{n}$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[46]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.  Google Scholar

[47]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[48]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces, Appl. Anal., 92 (2013), 1074-1084.  doi: 10.1080/00036811.2011.649733.  Google Scholar

[49]

A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4, Elsevier/North-Holland, Amsterdam, 2008,103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[50]

E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium Phenomena, II, 1–121, North-Holland, Amsterdam, 1984.  Google Scholar

[51]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[52]

M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[53]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (B), 133 (1986), 425-430.   Google Scholar

[54]

X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.  doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar

[55] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[56]

S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat, Potenza, 2007,217–226.  Google Scholar

[57]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar

[58]

M. F. ShlesingerG. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37.   Google Scholar

[59]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[60]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[61]

B. Tang, Regularity of pullback random attractors for stochastic Fitzhugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[62]

W. Tan and C. Sun, Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion, Discrete Contin. Dyn. Syst., 37 (2017), 6035-6067.  doi: 10.3934/dcds.2017260.  Google Scholar

[63]

V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.   Google Scholar

[64]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[65]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.  Google Scholar

[66]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[67]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[68]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[69]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002) 461–580. doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[70] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2008.   Google Scholar
[71]

G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.  doi: 10.1063/1.1355358.  Google Scholar

[1]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[7]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[15]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[16]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[17]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[18]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[19]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]