• Previous Article
    A learning-enhanced projection method for solving convex feasibility problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations
doi: 10.3934/dcdsb.2020377
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum

1. 

Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098, China

2. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China

* Corresponding author: Tong Tang

Received  June 2020 Revised  October 2020 Early access December 2020

Fund Project: Tong Tang is partially supported by NSFC (No. 11801138), the special grant of Jiangsu Provincial policy guidance plan for introducing foreign talents–BX2020082 and the Fundamental Research Funds for the Central Universities B200202156

In this paper, we prove the local well-posedness of strong solutions to the density-dependent incompressible magneto-micropolar system with vacuum. There is no assuming compatibility condition on the initial data.

Citation: Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020377
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[3]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[4]

R. Danchin and B. Ducomet, The low Mach number limit for a barotropic model of radiative flow, SIAM J. Math. Anal., 48 (2016), 1025-1053.  doi: 10.1137/15M1009081.  Google Scholar

[5]

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.  doi: 10.1002/cpa.21806.  Google Scholar

[6]

L. Du and Y. Wang, Mass concentration phenomenon in compressible magnetohydrodynamic flows, Nonlinearity, 28 (2015), 2959-2976.  doi: 10.1088/0951-7715/28/8/2959.  Google Scholar

[7]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[8]

M. DuránJ. Ferreira and M. A. Rojas-Medar, Reproductive weak solutions of magneto-micropolar fluid equations in exterior domains, Math. Comput. Modelling, 35 (2002), 779-791.  doi: 10.1016/S0895-7177(02)00049-3.  Google Scholar

[9]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[10]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.  Google Scholar

[11]

J. Fan, W. Sun and J. Yin, Blow-up criteria for Boussinesq system and MHD system and Landau-Lifshitz equations in a bounded domain, Bound. Value Probl., 90 (2016), 19 pp. doi: 10.1186/s13661-016-0598-3.  Google Scholar

[12]

J. FanB. Samet and Y. Zhou, A regularity criterion for a density-dependent incompressible liquid crystals model with vacuum, Hiroshima Math. J., 49 (2019), 129-138.  doi: 10.32917/hmj/1554516040.  Google Scholar

[13]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[14]

A. V. Kazhikov, Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, Dokl. Akad. Nauk SSSR, 216 (1974), 1008-1010.   Google Scholar

[15]

J. U. Kim, Weak solutions of an initial boundary-value problems for an incompressible viscous fluid with non-negative density, SIAM J. Math. Anal., 18 (1987), 89-96.  doi: 10.1137/0518007.  Google Scholar

[16]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[17]

Y. Liu and S. Li, Global well-posedness for magneto-micropolar system in $2\frac12$ dimensions, Appl. Math. Comput., 280 (2016), 72-85.  doi: 10.1016/j.amc.2016.01.002.  Google Scholar

[18]

G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[19]

G. Łukaszewicz and W. Sadowski, Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains, Z. Angew. Math. Phys., 55 (2004), 247-257.  doi: 10.1007/s00033-003-1127-7.  Google Scholar

[20]

L. Ma, Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial dissipation, magnetic diffusion and angular viscosity, Comput. Math. Appl., 75 (2018), 170-186.  doi: 10.1016/j.camwa.2017.09.009.  Google Scholar

[21]

L. Ma, On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity, Nonlinear Anal. Real World Appl., 40 (2018), 95-129.  doi: 10.1016/j.nonrwa.2017.08.014.  Google Scholar

[22]

G. Metivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158, (2001), 61–90. doi: 10.1007/PL00004241.  Google Scholar

[23]

C. J. Niche and C. Perusato, Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, preprint, 2020, arXiv: 2006.14427. Google Scholar

[24]

J. Simon, Nonhomogeneous viscous incompressible fluid: Existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[25]

Y. F. WangL. Du and S. Li, Blowup mechanism for viscous compressible heat-conductive magnetohydrodynamic flows in three dimensions, Sci. China Math., 58 (2015), 1677-1696.  doi: 10.1007/s11425-014-4951-7.  Google Scholar

[26]

Y. F. Wang, Weak Serrin-type blowup criterion for three-dimensional nonhomogeneous viscous incompressible heat conducting flows, Phys. D, 402 (2020), 132203, 8 pp. doi: 10.1016/j.physd.2019.132203.  Google Scholar

[27]

H. Wu, Strong solution to the incompressible MHD equations with vacuum, Comput. Math. Appl., 61 (2011), 2742-2753.  doi: 10.1016/j.camwa.2011.03.033.  Google Scholar

[28]

J. Yuan, Existence theorem and blow-up criterion for the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113-1130.  doi: 10.1002/mma.967.  Google Scholar

[29]

Z. ZhangZ. A. Yao and X. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Anal., 74 (2011), 2220-2225.  doi: 10.1016/j.na.2010.11.026.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[3]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[4]

R. Danchin and B. Ducomet, The low Mach number limit for a barotropic model of radiative flow, SIAM J. Math. Anal., 48 (2016), 1025-1053.  doi: 10.1137/15M1009081.  Google Scholar

[5]

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.  doi: 10.1002/cpa.21806.  Google Scholar

[6]

L. Du and Y. Wang, Mass concentration phenomenon in compressible magnetohydrodynamic flows, Nonlinearity, 28 (2015), 2959-2976.  doi: 10.1088/0951-7715/28/8/2959.  Google Scholar

[7]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[8]

M. DuránJ. Ferreira and M. A. Rojas-Medar, Reproductive weak solutions of magneto-micropolar fluid equations in exterior domains, Math. Comput. Modelling, 35 (2002), 779-791.  doi: 10.1016/S0895-7177(02)00049-3.  Google Scholar

[9]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[10]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.  Google Scholar

[11]

J. Fan, W. Sun and J. Yin, Blow-up criteria for Boussinesq system and MHD system and Landau-Lifshitz equations in a bounded domain, Bound. Value Probl., 90 (2016), 19 pp. doi: 10.1186/s13661-016-0598-3.  Google Scholar

[12]

J. FanB. Samet and Y. Zhou, A regularity criterion for a density-dependent incompressible liquid crystals model with vacuum, Hiroshima Math. J., 49 (2019), 129-138.  doi: 10.32917/hmj/1554516040.  Google Scholar

[13]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[14]

A. V. Kazhikov, Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, Dokl. Akad. Nauk SSSR, 216 (1974), 1008-1010.   Google Scholar

[15]

J. U. Kim, Weak solutions of an initial boundary-value problems for an incompressible viscous fluid with non-negative density, SIAM J. Math. Anal., 18 (1987), 89-96.  doi: 10.1137/0518007.  Google Scholar

[16]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[17]

Y. Liu and S. Li, Global well-posedness for magneto-micropolar system in $2\frac12$ dimensions, Appl. Math. Comput., 280 (2016), 72-85.  doi: 10.1016/j.amc.2016.01.002.  Google Scholar

[18]

G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[19]

G. Łukaszewicz and W. Sadowski, Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains, Z. Angew. Math. Phys., 55 (2004), 247-257.  doi: 10.1007/s00033-003-1127-7.  Google Scholar

[20]

L. Ma, Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial dissipation, magnetic diffusion and angular viscosity, Comput. Math. Appl., 75 (2018), 170-186.  doi: 10.1016/j.camwa.2017.09.009.  Google Scholar

[21]

L. Ma, On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity, Nonlinear Anal. Real World Appl., 40 (2018), 95-129.  doi: 10.1016/j.nonrwa.2017.08.014.  Google Scholar

[22]

G. Metivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158, (2001), 61–90. doi: 10.1007/PL00004241.  Google Scholar

[23]

C. J. Niche and C. Perusato, Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, preprint, 2020, arXiv: 2006.14427. Google Scholar

[24]

J. Simon, Nonhomogeneous viscous incompressible fluid: Existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[25]

Y. F. WangL. Du and S. Li, Blowup mechanism for viscous compressible heat-conductive magnetohydrodynamic flows in three dimensions, Sci. China Math., 58 (2015), 1677-1696.  doi: 10.1007/s11425-014-4951-7.  Google Scholar

[26]

Y. F. Wang, Weak Serrin-type blowup criterion for three-dimensional nonhomogeneous viscous incompressible heat conducting flows, Phys. D, 402 (2020), 132203, 8 pp. doi: 10.1016/j.physd.2019.132203.  Google Scholar

[27]

H. Wu, Strong solution to the incompressible MHD equations with vacuum, Comput. Math. Appl., 61 (2011), 2742-2753.  doi: 10.1016/j.camwa.2011.03.033.  Google Scholar

[28]

J. Yuan, Existence theorem and blow-up criterion for the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113-1130.  doi: 10.1002/mma.967.  Google Scholar

[29]

Z. ZhangZ. A. Yao and X. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Anal., 74 (2011), 2220-2225.  doi: 10.1016/j.na.2010.11.026.  Google Scholar

[1]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[2]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[3]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[4]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[5]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[6]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[7]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[8]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[9]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[10]

Vladimir Sharafutdinov. The linearized problem of magneto-photoelasticity. Inverse Problems & Imaging, 2014, 8 (1) : 247-257. doi: 10.3934/ipi.2014.8.247

[11]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[12]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. An existence theorem for the magneto-viscoelastic problem. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 435-447. doi: 10.3934/dcdss.2012.5.435

[13]

Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319

[14]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[15]

Sergiu Klainerman, Igor Rodnianski. On emerging scarred surfaces for the Einstein vacuum equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1007-1031. doi: 10.3934/dcds.2010.28.1007

[16]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic & Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[17]

Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magneto-elastic interactions. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1697-1704. doi: 10.3934/cpaa.2010.9.1697

[18]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[19]

Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643

[20]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (149)
  • HTML views (335)
  • Cited by (0)

Other articles
by authors

[Back to Top]