doi: 10.3934/dcdsb.2021003

Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion

260 Dwight St, New Haven, CT 06511, USA

Received  August 2020 Revised  September 2020 Published  December 2020

The Swift-Hohenberg equation is ubiquitous in the study of bistable dynamics. In this paper, we study the dynamic transitions of the Swift-Hohenberg equation with a third-order dispersion term in one spacial dimension with a periodic boundary condition. As a control parameter crosses a critical value, the trivial stable equilibrium solution will lose its stability, and undergoes a dynamic transition to a new physical state, described by a local attractor. The main result of this paper is to fully characterize the type and detailed structure of the transition using dynamic transition theory [7]. In particular, employing techniques from center manifold theory, we reduce this infinite dimensional problem to a finite one since the space on which the exchange of stability occurs is finite dimensional. The problem then reduces to analysis of single or double Hopf bifurcations, and we completely classify the possible phase changes depending on the dispersion for every spacial period.

Citation: Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021003
References:
[1]

J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Discrete Contin. Dyn. Syst. Ser. B, 7 (2012), 2431-2449.  doi: 10.3934/dcdsb.2012.17.2431.  Google Scholar

[2]

A. Hariz, L. Bahloul, L. Cherbi, K. Panajotov, M. Clerc, M. A. Ferré, B. Kostet, E. Averlant and M. Tlidi, Swift-Hohenberg equation with third-order dispersion for optical fiber resonators, Phys. Rev. A, 100 (2019), 023816. doi: 10.1103/PhysRevA.100.023816.  Google Scholar

[3]

T. Hoang and H. J. Hwang, Dynamic pattern formation in Swift-Hohenberg equations, Quart. Appl. Math., 69 (2011), 603-612.  doi: 10.1090/S0033-569X-2011-01260-1.  Google Scholar

[4]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[5]

T. Ma and S. Wang, Bifurcation and stability of superconductivity, J. Math. Phys., 46 (2005), 095112, 31 pp. doi: 10.1063/1.2012128.  Google Scholar

[6]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. doi: 10.1142/5798.  Google Scholar

[7]

T. Ma and S. Wang, Phase Transition Dynamics, Springer Nature Switzerland AG, 2013. Google Scholar

[8]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

show all references

References:
[1]

J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Discrete Contin. Dyn. Syst. Ser. B, 7 (2012), 2431-2449.  doi: 10.3934/dcdsb.2012.17.2431.  Google Scholar

[2]

A. Hariz, L. Bahloul, L. Cherbi, K. Panajotov, M. Clerc, M. A. Ferré, B. Kostet, E. Averlant and M. Tlidi, Swift-Hohenberg equation with third-order dispersion for optical fiber resonators, Phys. Rev. A, 100 (2019), 023816. doi: 10.1103/PhysRevA.100.023816.  Google Scholar

[3]

T. Hoang and H. J. Hwang, Dynamic pattern formation in Swift-Hohenberg equations, Quart. Appl. Math., 69 (2011), 603-612.  doi: 10.1090/S0033-569X-2011-01260-1.  Google Scholar

[4]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[5]

T. Ma and S. Wang, Bifurcation and stability of superconductivity, J. Math. Phys., 46 (2005), 095112, 31 pp. doi: 10.1063/1.2012128.  Google Scholar

[6]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. doi: 10.1142/5798.  Google Scholar

[7]

T. Ma and S. Wang, Phase Transition Dynamics, Springer Nature Switzerland AG, 2013. Google Scholar

[8]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

Figure 1.  These vector fields show the general shape of the case ${\mathop{\rm Re}\nolimits} C > 0 $ and ${\mathop{\rm Re}\nolimits} D < 0 $. The vertical axis represents $ \rho_2 $ and the horizontal represents $ \rho_1 $. The darker line is given by $ \rho_2 = m_1 \rho_1 $ and the lighter line is given by $ \rho_2 = m_2 \rho_1 $
Figure 2.  Plot of ${\mathop{\rm Re}\nolimits} \beta_n(0) $ for various $ \ell $. One can see from the figure that for large $ \ell $, the maximas over $ n \in \mathbb{Z} $ are attained at one or two pairs of conjugate eigenvalues. For sufficiently small $ \ell $, $ \beta_0(0) $ will be the maximum eigenvalue
Figure 3.  A visual of the partition. $ \mathcal I_1 $, $ \mathcal I_2 $, $ \mathcal I_3 $, and $ \mathcal I_4 $ are encoded by the different shades
Figure 4.  Phase diagram for $ k = 2 $
Figure 5.  Phase diagram for $ k = 6 $
Figure 6.  The phase diagram at $ \ell = 2\pi $
Figure 7.  Forward in time trajectories (left) tending towards the stable periodic orbit, and backward in time trajectories (right) tending towards the unstable periodic orbit
Figure 8.  The blue line is the numerical approximations of the radius of the limit cycles as a function of $ \lambda $, and the lighter line is the analytical limiting behavior as $ \lambda \to 0 $
[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[6]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[7]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[8]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[16]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (18)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]