
-
Previous Article
On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation
- DCDS-B Home
- This Issue
-
Next Article
Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces
Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
We consider a two-species Lotka-Volterra competition system with both local and nonlocal intraspecific and interspecific competitions under the homogeneous Neumann condition. Firstly, we obtain conditions for the existence of Hopf, Turing, Turing-Hopf bifurcations and the necessary and sufficient condition that Turing instability occurs in the weak competition case, and find that the strength of nonlocal intraspecific competitions is the key factor for the stability of coexistence equilibrium. Secondly, we derive explicit formulas of normal forms up to order 3 by applying center manifold theory and normal form method, in which we show the difference compared with system without nonlocal terms in calculating coefficients of normal forms. Thirdly, the existence of complex spatiotemporal phenomena, such as the spatial homogeneous periodic orbit, a pair of stable spatial inhomogeneous steady states and a pair of stable spatial inhomogeneous periodic orbits, is rigorously proved by analyzing the amplitude equations. It is shown that suitably strong nonlocal intraspecific competitions and nonlocal delays can result in various coexistence states for the competition system in the weak competition case. Lastly, these complex spatiotemporal patterns are presented in the numerical results.
References:
[1] |
Q. An and W. Jiang,
Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183. |
[2] |
E. Beretta and Y. Tang,
Extension of a geometric stability switch criterion, Funkc. Ekvacioj, 46 (2003), 337-361.
doi: 10.1619/fesi.46.337. |
[3] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[4] |
X. Cao and W. Jiang,
Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response, Nonlinear Anal. Real World Appl., 43 (2018), 428-450.
doi: 10.1016/j.nonrwa.2018.03.010. |
[5] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calculus of Variations and Partial Differential Equations, 59 (2020), Article number: 33.
doi: 10.1007/s00526-019-1693-y. |
[6] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equ., 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[7] |
X. Chen and W. Jiang,
Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.
doi: 10.1016/j.nonrwa.2019.03.013. |
[8] |
X. Chen, W. Jiang and S. Ruan, Global dynamics and complex patterns in Lotka-Volterra systems: The effects of both local and nonlocal intraspecific and interspecific competitions, To appear. Google Scholar |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
H. I. Freedman and Y. Kuang,
Stability switches in linear scalar neutral delay equations, Funkc. Ekvacioj, 34 (1991), 187-209.
|
[11] |
J. Furter and M. Grinfeld,
Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[12] |
S. A. Gourley and N. F. Britton,
A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.
doi: 10.1007/BF00160498. |
[13] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[14] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[15] |
S. A. Gourley, J. W.-H. So and J. Wu,
Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[16] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect, J. Differ. Equ., 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[18] |
X. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[19] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay, J. Differ. Equ., 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[20] |
W. Jiang, Q. An and J. Shi,
Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equ., 268 (2019), 6067-6102.
doi: 10.1016/j.jde.2019.11.039. |
[21] |
W. Jiang, H. Wang and X. Cao,
Turing instability and Turing-Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223-2247.
doi: 10.1007/s10884-018-9702-y. |
[22] |
Y. Kuang and H. L. Smith,
Convergence in Lotka-Volterra typediffusive delay systems withoutdominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B, 34 (1993), 471-493.
doi: 10.1017/S0334270000009036. |
[23] |
A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, New York, 1925. Google Scholar |
[24] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[25] |
Y. Lou and P. Zhou,
Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equ., 259 (2015), 141-171.
doi: 10.1016/j.jde.2015.02.004. |
[26] |
W. Ni, J. Shi and M. Wang,
Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model, J. Differ. Equ., 264 (2018), 6891-6932.
doi: 10.1016/j.jde.2018.02.002. |
[27] |
S. Pal, S. Petrovskii, S. Ghorai and M. Banerjee, Spatiotemporal pattern formation in 2d prey-predator system with nonlocal intraspecific competition, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105478, 15pp.
doi: 10.1016/j.cnsns.2020.105478. |
[28] |
C. V. Pao,
Global asymptotic stability of Lotka-Vlterra competition systems with diffusion and time delays, Nonlinear Anal. Real World Appl., 5 (2004), 91-104.
doi: 10.1016/S1468-1218(03)00018-X. |
[29] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[30] |
V. P. Shukla,
Conditions for global stability of two-species population models with discrete time delay, Bull. Math. Biol., 45 (1983), 793-805.
|
[31] |
Y. Song, M. Han and Y. Peng,
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Solitons Fract., 22 (2004), 1139-1148.
doi: 10.1016/j.chaos.2004.03.026. |
[32] |
Y. Song, H. Jiang, Q. Liu and Y. Yuan,
Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560. |
[33] |
Y. Song, T. Zhang and Y. Peng,
Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229-258.
doi: 10.1016/j.cnsns.2015.10.002. |
[34] |
Y. Tang and L. Zhou,
Hopf bifurcation and stability of a competition diffusion system with distributed delay, Publ. RIMS, Kyoto Univ., 41 (2005), 579-597.
doi: 10.2977/prims/1145475224. |
[35] |
V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Licei., 2 (1926), 31-113. Google Scholar |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
Y. Yamada,
Asymptotic stability for some systems of semilinear Volterra diffusion equations, J. Differ. Equ., 52 (1984), 295-326.
doi: 10.1016/0022-0396(84)90165-7. |
[38] |
Y. Yamada,
On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal.-Theory Methods Appl., 118 (2015), 51-62.
doi: 10.1016/j.na.2015.01.016. |
[39] |
J. Zhang, W. Li and X. Yan, Bifurcation and spatiotemporal patterns in a homogeneous diffusion-competition system with delays, Int. J. Biomath., 5 (2012), 1250049, 23pp.
doi: 10.1142/S1793524512500490. |
show all references
References:
[1] |
Q. An and W. Jiang,
Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183. |
[2] |
E. Beretta and Y. Tang,
Extension of a geometric stability switch criterion, Funkc. Ekvacioj, 46 (2003), 337-361.
doi: 10.1619/fesi.46.337. |
[3] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[4] |
X. Cao and W. Jiang,
Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response, Nonlinear Anal. Real World Appl., 43 (2018), 428-450.
doi: 10.1016/j.nonrwa.2018.03.010. |
[5] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calculus of Variations and Partial Differential Equations, 59 (2020), Article number: 33.
doi: 10.1007/s00526-019-1693-y. |
[6] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equ., 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[7] |
X. Chen and W. Jiang,
Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.
doi: 10.1016/j.nonrwa.2019.03.013. |
[8] |
X. Chen, W. Jiang and S. Ruan, Global dynamics and complex patterns in Lotka-Volterra systems: The effects of both local and nonlocal intraspecific and interspecific competitions, To appear. Google Scholar |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
H. I. Freedman and Y. Kuang,
Stability switches in linear scalar neutral delay equations, Funkc. Ekvacioj, 34 (1991), 187-209.
|
[11] |
J. Furter and M. Grinfeld,
Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[12] |
S. A. Gourley and N. F. Britton,
A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.
doi: 10.1007/BF00160498. |
[13] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[14] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[15] |
S. A. Gourley, J. W.-H. So and J. Wu,
Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[16] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect, J. Differ. Equ., 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[18] |
X. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[19] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay, J. Differ. Equ., 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[20] |
W. Jiang, Q. An and J. Shi,
Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equ., 268 (2019), 6067-6102.
doi: 10.1016/j.jde.2019.11.039. |
[21] |
W. Jiang, H. Wang and X. Cao,
Turing instability and Turing-Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223-2247.
doi: 10.1007/s10884-018-9702-y. |
[22] |
Y. Kuang and H. L. Smith,
Convergence in Lotka-Volterra typediffusive delay systems withoutdominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B, 34 (1993), 471-493.
doi: 10.1017/S0334270000009036. |
[23] |
A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, New York, 1925. Google Scholar |
[24] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[25] |
Y. Lou and P. Zhou,
Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equ., 259 (2015), 141-171.
doi: 10.1016/j.jde.2015.02.004. |
[26] |
W. Ni, J. Shi and M. Wang,
Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model, J. Differ. Equ., 264 (2018), 6891-6932.
doi: 10.1016/j.jde.2018.02.002. |
[27] |
S. Pal, S. Petrovskii, S. Ghorai and M. Banerjee, Spatiotemporal pattern formation in 2d prey-predator system with nonlocal intraspecific competition, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105478, 15pp.
doi: 10.1016/j.cnsns.2020.105478. |
[28] |
C. V. Pao,
Global asymptotic stability of Lotka-Vlterra competition systems with diffusion and time delays, Nonlinear Anal. Real World Appl., 5 (2004), 91-104.
doi: 10.1016/S1468-1218(03)00018-X. |
[29] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[30] |
V. P. Shukla,
Conditions for global stability of two-species population models with discrete time delay, Bull. Math. Biol., 45 (1983), 793-805.
|
[31] |
Y. Song, M. Han and Y. Peng,
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Solitons Fract., 22 (2004), 1139-1148.
doi: 10.1016/j.chaos.2004.03.026. |
[32] |
Y. Song, H. Jiang, Q. Liu and Y. Yuan,
Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560. |
[33] |
Y. Song, T. Zhang and Y. Peng,
Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229-258.
doi: 10.1016/j.cnsns.2015.10.002. |
[34] |
Y. Tang and L. Zhou,
Hopf bifurcation and stability of a competition diffusion system with distributed delay, Publ. RIMS, Kyoto Univ., 41 (2005), 579-597.
doi: 10.2977/prims/1145475224. |
[35] |
V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Licei., 2 (1926), 31-113. Google Scholar |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
Y. Yamada,
Asymptotic stability for some systems of semilinear Volterra diffusion equations, J. Differ. Equ., 52 (1984), 295-326.
doi: 10.1016/0022-0396(84)90165-7. |
[38] |
Y. Yamada,
On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal.-Theory Methods Appl., 118 (2015), 51-62.
doi: 10.1016/j.na.2015.01.016. |
[39] |
J. Zhang, W. Li and X. Yan, Bifurcation and spatiotemporal patterns in a homogeneous diffusion-competition system with delays, Int. J. Biomath., 5 (2012), 1250049, 23pp.
doi: 10.1142/S1793524512500490. |






Parameters | ||||||||||
Values |
Parameters | ||||||||||
Values |
Parameters | |||||||||||
Values |
Parameters | |||||||||||
Values |
[1] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[2] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[3] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[4] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[5] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[8] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[9] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[10] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[11] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[12] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[13] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[14] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[15] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[16] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[17] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[18] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[19] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[20] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]