
-
Previous Article
Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response
- DCDS-B Home
- This Issue
-
Next Article
Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant
Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications
1. | School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China |
2. | School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian, 362021, China |
We investigate the dynamics of the Poincar$ \acute{\rm e} $-map for an $ n $-dimensional Lotka-Volterra competitive model with seasonal succession. It is proved that there exists an $ (n-1) $-dimensional carrying simplex $ \Sigma $ which attracts every nontrivial orbit in $ \mathbb{R}^n_+ $. By using the theory of the carrying simplex, we simplify the approach for the complete classification of global dynamics for the two-dimensional Lotka-Volterra competitive model with seasonal succession proposed in [Hsu and Zhao, J. Math. Biology 64(2012), 109-130]. Our approach avoids the complicated estimates for the Floquet multipliers of the positive periodic solutions.
References:
[1] |
E. N. Dancer and P. Hess,
Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.
|
[2] |
D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell,
A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.
doi: 10.1126/science.287.5453.667. |
[3] |
O. Diekmann, Y. Wang and P. Yan,
Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.
doi: 10.3934/dcds.2008.20.37. |
[4] |
M. Gyllenberg, J. Jiang, L. Niu and P. Yan,
On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discrete Contin. Dyn. Syst., 38 (2018), 615-650.
doi: 10.3934/dcds.2018027. |
[5] |
M. W. Hirsch,
On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dynam., 2 (2008), 169-179.
doi: 10.1080/17513750801939236. |
[6] |
A. Huppert, B. Blasius, R. Olinky and L. Stone,
A model for seasonal phytoplankton blooms, J. Theor. Biol., 236 (2005), 276-290.
doi: 10.1016/j.jtbi.2005.03.012. |
[7] |
S. B. Hsu,
A competition model for a seasonally fluctuating nutrient, J. Math. Biol., 9 (1980), 115-132.
doi: 10.1007/BF00275917. |
[8] |
S. B. Hsu and X. Q. Zhao,
A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130.
doi: 10.1007/s00285-011-0408-6. |
[9] |
S. B. Hsu, H. L. Smith and P. Waltman,
Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.
doi: 10.1090/S0002-9947-96-01724-2. |
[10] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.
doi: 10.3934/dcds.2016.36.217. |
[11] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.
doi: 10.1007/s00285-016-1052-y. |
[12] |
J. Jiang, X. Liang and X. Q. Zhao,
Saddle-point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 203 (2004), 313-330.
doi: 10.1016/j.jde.2004.05.002. |
[13] |
J. Jiang, J. Mierczyński and Y. Wang,
Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Differential Equations, 246 (2009), 1623-1672.
doi: 10.1016/j.jde.2008.10.008. |
[14] |
C. A. Klausmeier,
Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics, J. Theor. Biol., 262 (2010), 584-595.
doi: 10.1016/j.jtbi.2009.10.018. |
[15] |
E. Litchman and C. A. Klausmeier,
Competition of phytoplankton under fluctuating light, American Naturalist, 157 (2001), 170-187.
doi: 10.1086/318628. |
[16] |
L. Niu and A. Ruiz-Herrera,
Trivial dynamics in discrete-time systems: Carrying simplex and translation arcs, Nonlinearity, 31 (2018), 2633-2650.
doi: 10.1088/1361-6544/aab46e. |
[17] |
A. Ruiz-Herrera,
Exclusion and dominance in discrete population models via the carrying simplex, Journal of Difference Equations and Applications, 19 (2013), 96-113.
doi: 10.1080/10236198.2011.628663. |
[18] |
M. Shub, Global Stability of Dynamical Systems, Springer, New-York/Berlin, 1987.
doi: 10.1007/978-1-4757-1947-5. |
[19] |
L. Stone, R. Olinky and A. Huppert,
Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.
doi: 10.1038/nature05638. |
[20] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, AMS, Providence, RI, 1995. |
[21] |
H. L. Smith,
Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.
doi: 10.1016/0022-0396(86)90086-0. |
[22] |
H. L. Smith,
Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17 (1986), 1289-1318.
doi: 10.1137/0517091. |
[23] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043. |
[24] |
H. L. Smith and H. R. Thieme,
Stable coexistence and bi-stability for competitive systems on ordered Banach spaces, J. Differential Equations, 176 (2001), 195-222.
doi: 10.1006/jdeq.2001.3981. |
[25] |
C. F. Steiner, A. S. Schwaderer, V. Huber, C. A. Klausmeier and E. Litchman,
Periodically forced food-chain dynamics: Model predictions and experimental validation, Ecology, 90 (2009), 3099-3107.
doi: 10.1890/08-2377.1. |
[26] |
U. Sommer, Z. M. Gliwicz, W. Lampert and A. Duncan, The PEG-model of seasonal succession of planktonic events in fresh waters, Archiv für Hydrobiologie, 106 (1986), 433–471. Google Scholar |
[27] |
P. Takáč,
Domains of attraction of generic $\omega$-limit sets for strongly monotone discrete-time semigroups, J. Reine Angew. Math., 423 (1992), 101-173.
doi: 10.1515/crll.1992.423.101. |
[28] |
Y. Wang and J. Jiang,
Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.
doi: 10.1016/S0022-0396(02)00025-6. |
[29] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |
[30] |
Y. X. Zhang and X. Q. Zhao,
Bistable travelling waves for reaction and diffusion model with seasonal succession, Nonlinearity, 26 (2013), 691-709.
doi: 10.1088/0951-7715/26/3/691. |
show all references
References:
[1] |
E. N. Dancer and P. Hess,
Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.
|
[2] |
D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell,
A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.
doi: 10.1126/science.287.5453.667. |
[3] |
O. Diekmann, Y. Wang and P. Yan,
Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.
doi: 10.3934/dcds.2008.20.37. |
[4] |
M. Gyllenberg, J. Jiang, L. Niu and P. Yan,
On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discrete Contin. Dyn. Syst., 38 (2018), 615-650.
doi: 10.3934/dcds.2018027. |
[5] |
M. W. Hirsch,
On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dynam., 2 (2008), 169-179.
doi: 10.1080/17513750801939236. |
[6] |
A. Huppert, B. Blasius, R. Olinky and L. Stone,
A model for seasonal phytoplankton blooms, J. Theor. Biol., 236 (2005), 276-290.
doi: 10.1016/j.jtbi.2005.03.012. |
[7] |
S. B. Hsu,
A competition model for a seasonally fluctuating nutrient, J. Math. Biol., 9 (1980), 115-132.
doi: 10.1007/BF00275917. |
[8] |
S. B. Hsu and X. Q. Zhao,
A Lotka-Volterra competition model with seasonal succession, J. Math. Biol., 64 (2012), 109-130.
doi: 10.1007/s00285-011-0408-6. |
[9] |
S. B. Hsu, H. L. Smith and P. Waltman,
Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.
doi: 10.1090/S0002-9947-96-01724-2. |
[10] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.
doi: 10.3934/dcds.2016.36.217. |
[11] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.
doi: 10.1007/s00285-016-1052-y. |
[12] |
J. Jiang, X. Liang and X. Q. Zhao,
Saddle-point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 203 (2004), 313-330.
doi: 10.1016/j.jde.2004.05.002. |
[13] |
J. Jiang, J. Mierczyński and Y. Wang,
Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Differential Equations, 246 (2009), 1623-1672.
doi: 10.1016/j.jde.2008.10.008. |
[14] |
C. A. Klausmeier,
Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics, J. Theor. Biol., 262 (2010), 584-595.
doi: 10.1016/j.jtbi.2009.10.018. |
[15] |
E. Litchman and C. A. Klausmeier,
Competition of phytoplankton under fluctuating light, American Naturalist, 157 (2001), 170-187.
doi: 10.1086/318628. |
[16] |
L. Niu and A. Ruiz-Herrera,
Trivial dynamics in discrete-time systems: Carrying simplex and translation arcs, Nonlinearity, 31 (2018), 2633-2650.
doi: 10.1088/1361-6544/aab46e. |
[17] |
A. Ruiz-Herrera,
Exclusion and dominance in discrete population models via the carrying simplex, Journal of Difference Equations and Applications, 19 (2013), 96-113.
doi: 10.1080/10236198.2011.628663. |
[18] |
M. Shub, Global Stability of Dynamical Systems, Springer, New-York/Berlin, 1987.
doi: 10.1007/978-1-4757-1947-5. |
[19] |
L. Stone, R. Olinky and A. Huppert,
Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.
doi: 10.1038/nature05638. |
[20] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, AMS, Providence, RI, 1995. |
[21] |
H. L. Smith,
Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.
doi: 10.1016/0022-0396(86)90086-0. |
[22] |
H. L. Smith,
Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17 (1986), 1289-1318.
doi: 10.1137/0517091. |
[23] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043. |
[24] |
H. L. Smith and H. R. Thieme,
Stable coexistence and bi-stability for competitive systems on ordered Banach spaces, J. Differential Equations, 176 (2001), 195-222.
doi: 10.1006/jdeq.2001.3981. |
[25] |
C. F. Steiner, A. S. Schwaderer, V. Huber, C. A. Klausmeier and E. Litchman,
Periodically forced food-chain dynamics: Model predictions and experimental validation, Ecology, 90 (2009), 3099-3107.
doi: 10.1890/08-2377.1. |
[26] |
U. Sommer, Z. M. Gliwicz, W. Lampert and A. Duncan, The PEG-model of seasonal succession of planktonic events in fresh waters, Archiv für Hydrobiologie, 106 (1986), 433–471. Google Scholar |
[27] |
P. Takáč,
Domains of attraction of generic $\omega$-limit sets for strongly monotone discrete-time semigroups, J. Reine Angew. Math., 423 (1992), 101-173.
doi: 10.1515/crll.1992.423.101. |
[28] |
Y. Wang and J. Jiang,
Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.
doi: 10.1016/S0022-0396(02)00025-6. |
[29] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |
[30] |
Y. X. Zhang and X. Q. Zhao,
Bistable travelling waves for reaction and diffusion model with seasonal succession, Nonlinearity, 26 (2013), 691-709.
doi: 10.1088/0951-7715/26/3/691. |
[1] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[2] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[3] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[4] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[5] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[6] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[7] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[8] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[9] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[10] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[11] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[16] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[19] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[20] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]