• Previous Article
    Monotonic and nonmonotonic immune responses in viral infection systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances
doi: 10.3934/dcdsb.2021017

Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

* Corresponding author: zhangkj201@nenu.edu.cn

Received  August 2020 Revised  November 2020 Published  January 2021

Fund Project: The third author is supported by National Science Foundation of China (No. 11771071)

We are interested in the existence and stability of traveling waves of arbitrary amplitudes to a chemotaxis model with porous medium diffusion. We first make a complete classification of traveling waves under specific relations among the biological parameters. Then we show all these traveling waves are asymptotically stable under appropriate perturbations. The proof is based on a Cole-Hopf transformation and the energy method.

Citation: Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021017
References:
[1]

M. BurgerM. Di Francesco and Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.  doi: 10.1137/050637923.  Google Scholar

[2]

S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090, 21 pp. doi: 10.1016/j.jmaa.2020.124090.  Google Scholar

[3]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[4]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51-69.   Google Scholar

[6]

H.-Y. JinJ. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[7]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[8]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Comm. Pure Appl. Math., 47 (1994), 1547-1569.  doi: 10.1002/cpa.3160471202.  Google Scholar

[9]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[10]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[11]

D. LiR. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[12]

J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268 (2020), 6940-6970.  doi: 10.1016/j.jde.2019.11.076.  Google Scholar

[13]

T. LiR. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

V. R. MartinezZ.-A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[16]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[17]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publications Math'ematiques d'Orsay 78-02, D'epartement de Math'ematique, Universit'e de ParisSud, Orsay, France, 1978.  Google Scholar

[18]

M. OlsonR. FordJ. Smith and E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864-3870.  doi: 10.1021/es035236s.  Google Scholar

[19]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[20]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.  doi: 10.3934/dcds.2012.32.1901.  Google Scholar

[21]

F. Valdés-ParadaM. PorterK. NarayanaswamyR. Ford and B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413-1428.   Google Scholar

[22]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis: A review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[23]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[24]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[25]

Y. YangH. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.  doi: 10.1137/S0036141000337796.  Google Scholar

[26]

Y. YangH. ChenW. Liu and B. D. Sleeman, The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.  doi: 10.1016/j.jde.2005.01.002.  Google Scholar

[27]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

show all references

References:
[1]

M. BurgerM. Di Francesco and Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.  doi: 10.1137/050637923.  Google Scholar

[2]

S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090, 21 pp. doi: 10.1016/j.jmaa.2020.124090.  Google Scholar

[3]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[4]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51-69.   Google Scholar

[6]

H.-Y. JinJ. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[7]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[8]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Comm. Pure Appl. Math., 47 (1994), 1547-1569.  doi: 10.1002/cpa.3160471202.  Google Scholar

[9]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[10]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[11]

D. LiR. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[12]

J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268 (2020), 6940-6970.  doi: 10.1016/j.jde.2019.11.076.  Google Scholar

[13]

T. LiR. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

V. R. MartinezZ.-A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[16]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[17]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publications Math'ematiques d'Orsay 78-02, D'epartement de Math'ematique, Universit'e de ParisSud, Orsay, France, 1978.  Google Scholar

[18]

M. OlsonR. FordJ. Smith and E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864-3870.  doi: 10.1021/es035236s.  Google Scholar

[19]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[20]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.  doi: 10.3934/dcds.2012.32.1901.  Google Scholar

[21]

F. Valdés-ParadaM. PorterK. NarayanaswamyR. Ford and B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413-1428.   Google Scholar

[22]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis: A review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[23]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[24]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[25]

Y. YangH. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.  doi: 10.1137/S0036141000337796.  Google Scholar

[26]

Y. YangH. ChenW. Liu and B. D. Sleeman, The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.  doi: 10.1016/j.jde.2005.01.002.  Google Scholar

[27]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[3]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[4]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[5]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[9]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[10]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[11]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[12]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[20]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (48)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]