-
Previous Article
Limiting behavior of unstable manifolds for spdes in varying phase spaces
- DCDS-B Home
- This Issue
-
Next Article
Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models
Weak time discretization for slow-fast stochastic reaction-diffusion equations
1. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
2. | School of Information, Nanjing Audit University, 211815, China |
This paper derives a weak convergence theorem of the time discretization of the slow component for a two-time-scale stochastic evolutionary equations on interval [0, 1]. Here the drift coefficient of the slow component is cubic with linear coupling between slow and fast components.
References:
[1] |
J. Bao, G. Yin and C. Yuan,
Two-time-scale stochastic partial differential equations driven by $\alpha$-stable noises: averaging principles, Bernoulli., 23 (2017), 645-669.
doi: 10.3150/14-BEJ677. |
[2] |
R. Bertram and J. E. Rubin,
Multi-time scale systems and fast-slow analysis, Math. Biosci., 287 (2017), 105-121.
doi: 10.1016/j.mbs.2016.07.003. |
[3] |
C.-E. Bréhier,
Strong and weak orders in averaging for SPDEs, Stoch. Proc. Appl., 122 (2012), 2553-2593.
doi: 10.1016/j.spa.2012.04.007. |
[4] |
C.-E. Bréhier,
Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise, Potential Analysis., 40 (2014), 1-40.
doi: 10.1007/s11118-013-9338-9. |
[5] |
S. Cerrai,
A Khasminskii type averaging principle for stochastic reaction-diffusion equations, Ann. Appl. Prob., 19 (2009), 899-948.
doi: 10.1214/08-AAP560. |
[6] |
S. Cerrai and M. Freidlin,
Averaging principle for a class of stochastic reaction-diffusion equations, Prob. Th. Related Fields, 144 (2009), 137-177.
doi: 10.1007/s00440-008-0144-z. |
[7] |
Z. Dong, X. Sun, H. Xiao and J. Zhai,
Averaging principle for one dimensional stochastic Burgers equation, J. Diff. Equa., 265 (2018), 4749-4797.
doi: 10.1016/j.jde.2018.06.020. |
[8] |
S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003, Available from: https://www.researchgate.net/publication/228607920. |
[9] |
J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Press, London, 2014.
doi: 10.1016/C2013-0-15235-X.![]() ![]() |
[10] |
W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations, Comm. Math. Sci., 1 (2003), 423–436. https://projecteuclid.org/euclid.cms/1250880094. |
[11] |
W. E and B. Engquist, Multiscale modeling and computations, Notice of AMS, 50 (2003), 1062–1070. http://hdl.handle.net/1903/9877 |
[12] |
W. E and B. Engquist,
The heterogeneous multiscale methods, Comm. Math. Sci., 1 (2003), 87-132.
|
[13] |
W. E, D. Liu and E. Vanden-Eijnden,
Analysis of multiscale methods for stochastic differential equations, Comm. Pure Appl. Math., 58 (2005), 1544-1585.
doi: 10.1002/cpa.20088. |
[14] |
W. E, P. Ming and P. Zhang,
Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156.
doi: 10.1090/S0894-0347-04-00469-2. |
[15] |
H. Fu, L. Wan and J. Liu, Weak order in averaging principle for two-time-scale stochastic partial differential equations, preprint, arXiv: 1802.00903. |
[16] |
H. Fu, L. Wan, Y. Wang, J. Liu and X. Liu,
Strong convergence rate in averaging principle for stochastic FitzHug-Nagumo system with two time-scales, J. Math. Anal. Appl., 416 (2014), 609-628.
doi: 10.1016/j.jmaa.2014.02.062. |
[17] |
E. Harvey, V. Kirk, M. Wechselberger and J. Sneyd,
Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics, J. Nonlinear Sci., 21 (2011), 639-683.
doi: 10.1007/s00332-011-9096-z. |
[18] |
R. Z. Khasminskiǐ,
On the averaging principle of the Itô stochastic differential equations, Kibernetika, 4 (1968), 260-279.
|
[19] |
N. Krylov and N. Bogliubov, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1943.
![]() ![]() |
[20] |
J. A. Sauders and F. Verhulst, Averaging Methods to Nonlinear Dynamical Systems, Springer–Verlag, New York, 1985.
doi: 10.1007/978-1-4757-4575-7. |
[21] |
N. G. Sorokina,
On a theorem of N.N. Bogoliubov, Ukrain. Mat. Zh., 4 (1959), 220-222.
|
[22] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer–Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[23] |
E. Vanden-Eijnden,
Numerical techniques for multiscale dynamical systems with stochastic effects, Comm. Math. Sci., 1 (2003), 385-391.
doi: 10.4310/CMS.2003.v1.n2.a11. |
[24] |
V. M. Volosov,
Averaging in systems of ordinary differential equations, Russian Math. Surveys, 17 (1962), 1-126.
|
[25] |
W. Wang and A. J. Roberts,
Average and deviation for slow-fast stochastic partial differential equations, J. Diff. Equa., 253 (2012), 1265-1286.
doi: 10.1016/j.jde.2012.05.011. |
[26] |
W. Wang and A. J. Roberts,
Slow manifold and averaging for slow-fast stochastic system, J. Math. Anal. Appl., 398 (2013), 822-839.
doi: 10.1016/j.jmaa.2012.09.029. |
[27] |
Y. Xu, J. Q. Duan and W. Xu,
An averaging principle for stochastic dynamical systems with Lévy noise, Physica D, 240 (2011), 1395-1401.
doi: 10.1016/j.physd.2011.06.001. |
show all references
References:
[1] |
J. Bao, G. Yin and C. Yuan,
Two-time-scale stochastic partial differential equations driven by $\alpha$-stable noises: averaging principles, Bernoulli., 23 (2017), 645-669.
doi: 10.3150/14-BEJ677. |
[2] |
R. Bertram and J. E. Rubin,
Multi-time scale systems and fast-slow analysis, Math. Biosci., 287 (2017), 105-121.
doi: 10.1016/j.mbs.2016.07.003. |
[3] |
C.-E. Bréhier,
Strong and weak orders in averaging for SPDEs, Stoch. Proc. Appl., 122 (2012), 2553-2593.
doi: 10.1016/j.spa.2012.04.007. |
[4] |
C.-E. Bréhier,
Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise, Potential Analysis., 40 (2014), 1-40.
doi: 10.1007/s11118-013-9338-9. |
[5] |
S. Cerrai,
A Khasminskii type averaging principle for stochastic reaction-diffusion equations, Ann. Appl. Prob., 19 (2009), 899-948.
doi: 10.1214/08-AAP560. |
[6] |
S. Cerrai and M. Freidlin,
Averaging principle for a class of stochastic reaction-diffusion equations, Prob. Th. Related Fields, 144 (2009), 137-177.
doi: 10.1007/s00440-008-0144-z. |
[7] |
Z. Dong, X. Sun, H. Xiao and J. Zhai,
Averaging principle for one dimensional stochastic Burgers equation, J. Diff. Equa., 265 (2018), 4749-4797.
doi: 10.1016/j.jde.2018.06.020. |
[8] |
S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003, Available from: https://www.researchgate.net/publication/228607920. |
[9] |
J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Press, London, 2014.
doi: 10.1016/C2013-0-15235-X.![]() ![]() |
[10] |
W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations, Comm. Math. Sci., 1 (2003), 423–436. https://projecteuclid.org/euclid.cms/1250880094. |
[11] |
W. E and B. Engquist, Multiscale modeling and computations, Notice of AMS, 50 (2003), 1062–1070. http://hdl.handle.net/1903/9877 |
[12] |
W. E and B. Engquist,
The heterogeneous multiscale methods, Comm. Math. Sci., 1 (2003), 87-132.
|
[13] |
W. E, D. Liu and E. Vanden-Eijnden,
Analysis of multiscale methods for stochastic differential equations, Comm. Pure Appl. Math., 58 (2005), 1544-1585.
doi: 10.1002/cpa.20088. |
[14] |
W. E, P. Ming and P. Zhang,
Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156.
doi: 10.1090/S0894-0347-04-00469-2. |
[15] |
H. Fu, L. Wan and J. Liu, Weak order in averaging principle for two-time-scale stochastic partial differential equations, preprint, arXiv: 1802.00903. |
[16] |
H. Fu, L. Wan, Y. Wang, J. Liu and X. Liu,
Strong convergence rate in averaging principle for stochastic FitzHug-Nagumo system with two time-scales, J. Math. Anal. Appl., 416 (2014), 609-628.
doi: 10.1016/j.jmaa.2014.02.062. |
[17] |
E. Harvey, V. Kirk, M. Wechselberger and J. Sneyd,
Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics, J. Nonlinear Sci., 21 (2011), 639-683.
doi: 10.1007/s00332-011-9096-z. |
[18] |
R. Z. Khasminskiǐ,
On the averaging principle of the Itô stochastic differential equations, Kibernetika, 4 (1968), 260-279.
|
[19] |
N. Krylov and N. Bogliubov, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1943.
![]() ![]() |
[20] |
J. A. Sauders and F. Verhulst, Averaging Methods to Nonlinear Dynamical Systems, Springer–Verlag, New York, 1985.
doi: 10.1007/978-1-4757-4575-7. |
[21] |
N. G. Sorokina,
On a theorem of N.N. Bogoliubov, Ukrain. Mat. Zh., 4 (1959), 220-222.
|
[22] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer–Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[23] |
E. Vanden-Eijnden,
Numerical techniques for multiscale dynamical systems with stochastic effects, Comm. Math. Sci., 1 (2003), 385-391.
doi: 10.4310/CMS.2003.v1.n2.a11. |
[24] |
V. M. Volosov,
Averaging in systems of ordinary differential equations, Russian Math. Surveys, 17 (1962), 1-126.
|
[25] |
W. Wang and A. J. Roberts,
Average and deviation for slow-fast stochastic partial differential equations, J. Diff. Equa., 253 (2012), 1265-1286.
doi: 10.1016/j.jde.2012.05.011. |
[26] |
W. Wang and A. J. Roberts,
Slow manifold and averaging for slow-fast stochastic system, J. Math. Anal. Appl., 398 (2013), 822-839.
doi: 10.1016/j.jmaa.2012.09.029. |
[27] |
Y. Xu, J. Q. Duan and W. Xu,
An averaging principle for stochastic dynamical systems with Lévy noise, Physica D, 240 (2011), 1395-1401.
doi: 10.1016/j.physd.2011.06.001. |
[1] |
Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008 |
[2] |
Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004 |
[3] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[4] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[5] |
Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure and Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761 |
[6] |
Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 |
[7] |
Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080 |
[8] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[9] |
Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223 |
[10] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
[11] |
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216 |
[12] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[13] |
Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure and Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685 |
[14] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3017-3025. doi: 10.3934/dcdss.2020465 |
[15] |
Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008 |
[16] |
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 |
[17] |
Francesco C. De Vecchi, Andrea Romano, Stefania Ugolini. A symmetry-adapted numerical scheme for SDEs. Journal of Geometric Mechanics, 2019, 11 (3) : 325-359. doi: 10.3934/jgm.2019018 |
[18] |
Jyoti Mishra. Analysis of the Fitzhugh Nagumo model with a new numerical scheme. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 781-795. doi: 10.3934/dcdss.2020044 |
[19] |
Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353 |
[20] |
José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]