
-
Previous Article
Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions
- DCDS-B Home
- This Issue
-
Next Article
On the Lorenz '96 model and some generalizations
Uniform stabilization of 1-D Schrödinger equation with internal difference-type control
1. | Department of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China |
2. | School of Mathematics, Tianjin University, Tianjin, 300354, China |
3. | School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China |
In this paper, we consider the stabilization problem of 1-D Schrödinger equation with internal difference-type control. Different from the other existing approaches of controller design, we introduce a new approach of controller design so called the parameterization controller. At first, we rewrite the system with internal difference-type control as a cascaded system of a transport equation and Schödinger equation; Further, to stabilize the system under consideration, we construct a target system that has exponential stability. By selecting the solution of nonlocal and singular initial value problem as parameter function and defining a bounded linear transformation, we show that the transformation maps the closed-loop system to the target system; Finally, we prove that the transformation is bounded inverse. Hence the closed-loop system is equivalent to the target system.
References:
[1] |
H. Chen, Y. Xie and G. Xu,
Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.
doi: 10.1080/00207179.2018.1444283. |
[2] |
H.-Y. Cui, Z.-J. Han and G.-Q. Xu,
Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.
doi: 10.1080/00036811.2015.1047830. |
[3] |
H. Cui, D. Liu and G. Xu,
Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.
doi: 10.3934/mcrf.2018015. |
[4] |
R. Datko, J. Lagnese and M. P. Polis,
An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.
doi: 10.1137/0324007. |
[5] |
R. Datko,
Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.
doi: 10.1109/9.186332. |
[6] |
R. Datko,
Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.
doi: 10.1109/9.566660. |
[7] |
X. Feng, G. Xu and Y. Chen,
Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.
doi: 10.1080/00207179.2017.1286693. |
[8] | I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968. Google Scholar |
[9] |
B.-Z. Guo and K.-Y. Yang,
Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.
doi: 10.1109/TAC.2010.2042363. |
[10] |
Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020).
doi: 10.1007/s11424-020-9294-6. |
[11] |
J.-J. Liu and J.-M. Wang,
Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.
doi: 10.1007/s10883-013-9189-0. |
[12] |
E. Machtygier and E. Zuazua,
Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.
|
[13] |
S. Nicaise and S.-E. Rebiai,
Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.
doi: 10.4171/PM/1879. |
[14] |
S. Nicaise and J. Valein,
Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.
doi: 10.1051/cocv/2009007. |
[15] |
S. Nicaise and C. Pignotti,
Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.
doi: 10.1007/s00498-014-0130-1. |
[16] |
Y. F. Shang and G. Q. Xu,
The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.
doi: 10.1093/imamci/dnq026. |
[17] |
Y. F. Shang and G. Q. Xu,
Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012. |
[18] |
Y. F. Shang and G. Q. Xu,
Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.
doi: 10.1016/j.jmaa.2014.09.013. |
[19] |
Y. F. Shang, G. Q. Xu and X. Li,
Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.
doi: 10.1093/imamci/dnu030. |
[20] |
K. Sriram and M. S. Gopinathan,
A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.
doi: 10.1016/j.jtbi.2004.04.006. |
[21] |
J. Srividhya and M. S. Gopinathan,
A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.
doi: 10.1016/j.jtbi.2005.12.020. |
[22] |
G. Q. Xu, S. P. Yung and L. K. Li,
Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.
doi: 10.1051/cocv:2006021. |
[23] |
K.-Y. Yang and C.-Z. Yao,
Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.
|
show all references
References:
[1] |
H. Chen, Y. Xie and G. Xu,
Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.
doi: 10.1080/00207179.2018.1444283. |
[2] |
H.-Y. Cui, Z.-J. Han and G.-Q. Xu,
Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.
doi: 10.1080/00036811.2015.1047830. |
[3] |
H. Cui, D. Liu and G. Xu,
Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.
doi: 10.3934/mcrf.2018015. |
[4] |
R. Datko, J. Lagnese and M. P. Polis,
An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.
doi: 10.1137/0324007. |
[5] |
R. Datko,
Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.
doi: 10.1109/9.186332. |
[6] |
R. Datko,
Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.
doi: 10.1109/9.566660. |
[7] |
X. Feng, G. Xu and Y. Chen,
Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.
doi: 10.1080/00207179.2017.1286693. |
[8] | I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968. Google Scholar |
[9] |
B.-Z. Guo and K.-Y. Yang,
Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.
doi: 10.1109/TAC.2010.2042363. |
[10] |
Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020).
doi: 10.1007/s11424-020-9294-6. |
[11] |
J.-J. Liu and J.-M. Wang,
Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.
doi: 10.1007/s10883-013-9189-0. |
[12] |
E. Machtygier and E. Zuazua,
Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.
|
[13] |
S. Nicaise and S.-E. Rebiai,
Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.
doi: 10.4171/PM/1879. |
[14] |
S. Nicaise and J. Valein,
Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.
doi: 10.1051/cocv/2009007. |
[15] |
S. Nicaise and C. Pignotti,
Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.
doi: 10.1007/s00498-014-0130-1. |
[16] |
Y. F. Shang and G. Q. Xu,
The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.
doi: 10.1093/imamci/dnq026. |
[17] |
Y. F. Shang and G. Q. Xu,
Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012. |
[18] |
Y. F. Shang and G. Q. Xu,
Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.
doi: 10.1016/j.jmaa.2014.09.013. |
[19] |
Y. F. Shang, G. Q. Xu and X. Li,
Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.
doi: 10.1093/imamci/dnu030. |
[20] |
K. Sriram and M. S. Gopinathan,
A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.
doi: 10.1016/j.jtbi.2004.04.006. |
[21] |
J. Srividhya and M. S. Gopinathan,
A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.
doi: 10.1016/j.jtbi.2005.12.020. |
[22] |
G. Q. Xu, S. P. Yung and L. K. Li,
Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.
doi: 10.1051/cocv:2006021. |
[23] |
K.-Y. Yang and C.-Z. Yao,
Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.
|




[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[5] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[6] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[9] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[10] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[11] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[12] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[13] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[14] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[15] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[16] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[17] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[18] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[19] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[20] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]