doi: 10.3934/dcdsb.2021024

On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, 710126, China

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

* Corresponding author: youb2013@xjtu.edu.cn(B. You)

Received  July 2020 Revised  December 2020 Published  January 2021

The objective of this paper is to study the fractal dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Inspired by the idea of the $ \ell $-trajectory method, we prove the existence of a finite dimensional global attractor in an auxiliary normed space for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions and estimate the fractal dimension of the global attractor in the original phase space for this system by defining a Lipschitz mapping from the auxiliary normed space into the original phase space.

Citation: Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021024
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

[1]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[4]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[8]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[14]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[15]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[18]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (19)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]