doi: 10.3934/dcdsb.2021024
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, 710126, China

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

* Corresponding author: youb2013@xjtu.edu.cn(B. You)

Received  July 2020 Revised  December 2020 Early access January 2021

The objective of this paper is to study the fractal dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Inspired by the idea of the $ \ell $-trajectory method, we prove the existence of a finite dimensional global attractor in an auxiliary normed space for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions and estimate the fractal dimension of the global attractor in the original phase space for this system by defining a Lipschitz mapping from the auxiliary normed space into the original phase space.

Citation: Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021024
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

[1]

Francesco Della Porta, Maurizio Grasselli. On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 299-317. doi: 10.3934/cpaa.2016.15.299

[2]

Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387

[3]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[4]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[5]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[6]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[7]

FRANCESCO DELLA PORTA, Maurizio Grasselli. Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]. Communications on Pure & Applied Analysis, 2017, 16 (1) : 369-372. doi: 10.3934/cpaa.2017018

[8]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[9]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[10]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[11]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[12]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[13]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[14]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 3989-4033. doi: 10.3934/dcdss.2021034

[15]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[16]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[17]

Ciprian G. Gal. Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 819-836. doi: 10.3934/cpaa.2008.7.819

[18]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[19]

Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041

[20]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (111)
  • HTML views (319)
  • Cited by (0)

Other articles
by authors

[Back to Top]