[1]
|
R. Arditi, L.-F Bersier and R. P. Rohr, The perfect mixing paradox and the logistic equation: Verhulst vs. Lotka, Ecosphere, 7 (2016), e01599.
doi: 10.1002/ecs2.1599.
|
[2]
|
R. Arditi, C. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theoretical Population Biology, 106 (2015), 45-59.
doi: 10.1016/j.tpb.2015.10.001.
|
[3]
|
R. Arditi, C. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theoretical Population Biology, 120 (2018), 11-15.
doi: 10.1016/j.tpb.2017.12.006.
|
[4]
|
A. Cvetković, Stabilizing the Metzler matrices with applications to dynamical systems, Calcolo, 57 (2020), Paper No. 1, 34 pp.
doi: 10.1007/s10092-019-0350-3.
|
[5]
|
D. L. DeAngelis, C. C. Travis and W. M. Post, Persistence and stability of seed-dispersel species in a patchy environment, Theoretical Population Biology, 16 (1979), 107-125.
doi: 10.1016/0040-5809(79)90008-X.
|
[6]
|
D. L. DeAngelis and B. Zhang, Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3087-3104.
doi: 10.3934/dcdsb.2014.19.3087.
|
[7]
|
D. L. DeAngelis, We i-Ming Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443-453.
doi: 10.1007/s12080-016-0302-3.
|
[8]
|
H. I. Freedman, B. Rai and P. Waltman, Mathematical models of population interactions with dispersal II: Differential survival in a change of habitat, Journal of Mathematical Analysis and Applications, 115 (1986), 140-154.
doi: 10.1016/0022-247X(86)90029-6.
|
[9]
|
H. I. Freedman and P. Waltman, Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator, SIAM Journal on Applied Mathematics, 32 (1977), 631-648.
doi: 10.1137/0132052.
|
[10]
|
F. Gantmacher, The Theory of Matrices, Volume 2, AMS Chelsea Publishing, 2000.
|
[11]
|
R. D. Holt, Population dynamics in two patch environments: Some anomalous consequences of an optimal habitat distribution, Theoretical Population Biology, 28 (1985), 181-201.
doi: 10.1016/0040-5809(85)90027-9.
|
[12]
|
S. A. Levin, Dispersion and population interactions, Amer. Natur, 108 (1974), 207-228.
doi: 10.1086/282900.
|
[13]
|
S. A. Levin, Spatial patterning and the structure of ecological communities, in Some Mathematical Questions in Biology, VII, Lectures on Math. in the Life Sciences, Amer. Math. Soc., Providence, R.I., 8 (1976), 1–35.
|
[14]
|
C. Lobry, T. Sari and S. Touhami, On Tykhonov's theorem for convergence of solutions of slow and fast systems, Electron. J. Differential Equations, 19 (1998), 22pp. https://ejde.math.txstate.edu/Volumes/1998/19/Lobry.pdf
|
[15]
|
Z. Lu and Y. Takeuchi, Global asymptotic behavior in single-species discrete diffusion systems, J. Math. Biol., 32 (1993), 67-77.
doi: 10.1007/BF00160375.
|
[16]
|
Y. Nesterov and V. Y. Protasov, Computing closest stable nonnegative matrix, SIAM Journal on Matrix Analysis and Applications, 41 (2020), 1-28.
doi: 10.1137/17M1144568.
|
[17]
|
H. G. Othmer, A Continuum Model for Coupled Cells, J. Math. Biology, 17 (1983), 351-369.
doi: 10.1007/BF00276521.
|
[18]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of microbial competition, Cambridge Studies in Mathematical Biology, 13. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[19]
|
Y. Takeuchi, Cooperative systems theory and global stability of diffusion models, Acta Applicandae Mathematicae, 14 (1989), 49-57.
doi: 10.1007/BF00046673.
|
[20]
|
A. N. Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sb. (N.S.), 31 (1952), 575–586. http://www.mathnet.ru/links/9e00b6540bb8ca1fdb5147771c7d98d4/sm5548.pdf
|
[21]
|
W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger Publishing Company, Huntington, NY, 1976.
|
[22]
|
B. P. Yurk and C. A. Cobbold, Homogenization techniques for population dynamics in strongly heterogeneous landscapes, Journal of Biological Dynamics, 12 (2018), 171-193.
doi: 10.1080/17513758.2017.1410238.
|
[23]
|
N. Zaker, L. Ketchemen and F. Lutscher, The effect of movement behavior on population density in patchy landscapes, Bulletin of Mathematical Biology, 82 (2020), 24pp.
doi: 10.1007/s11538-019-00680-3.
|
[24]
|
B. Zhang, X. Liu, D. L. DeAngelis, W. M. Ni and G. G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.
doi: 10.1016/j.mbs.2015.03.005.
|