
-
Previous Article
Initial value problem for fractional Volterra integro-differential equations with Caputo derivative
- DCDS-B Home
- This Issue
-
Next Article
Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients
Dynamics of a vector-host model under switching environments
1. | Department of Mathematics, The University of Alabama, Tuscaloosa, Alabama 35487-0350, USA |
2. | Faculty of Basic Sciences, Ho Chi Minh University of Transport, 2 Vo Oanh, Ho Chi Minh, Vietnam |
In this paper, the stochastic vector-host model has been proposed and analysed using nice properties of piecewise deterministic Markov processes (PDMPs). A threshold for the stochastic model is derived whose sign determines whether the disease will eventually disappear or persist. We show mathematically the existence of scenarios where switching plays a significant role in surprisingly reversing the long-term properties of deterministic systems.
References:
[1] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[2] |
Y. Asai, X. Han and P. E. Kloeden, Dynamics of Zika virus epidemic in random environment, in Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, 2019,665–684. |
[3] |
K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic sirs model with interval parameters, Discrete & Continuous Dynamical Systems-B, 24 (2019), 4827.
doi: 10.3934/dcdsb.2019033. |
[4] |
M. Benaim, Stochastic persistence, preprint, arXiv: 1806.08450. |
[5] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Annales de l'IHP Probabilités et Statistiques, 51 (2015), 1040–1075.
doi: 10.1214/14-AIHP619. |
[6] |
M. Benaïm, E. Strickler, et al., Random switching between vector fields having a common zero, The Annals of Applied Probability, 29 (2019), 326-375.
doi: 10.1214/18-AAP1418. |
[7] |
D. Bichara, Effects of migration on vector-borne diseases with forward and backward stage progression, preprint, arXiv: 1810.06777.
doi: 10.3934/dcdsb.2019140. |
[8] |
Z. Cao, X. Liu, X. Wen, L. Liu and L. Zu,
A regime-switching sir epidemic model with a ratio-dependent incidence rate and degenerate diffusion, Scientific Reports, 9 (2019), 1-7.
doi: 10.1186/s13662-017-1355-3. |
[9] |
M. H. Davis,
Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models, Journal of the Royal Statistical Society: Series B (Methodological), 46 (1984), 353-376.
doi: 10.1111/j.2517-6161.1984.tb01308.x. |
[10] |
N. H. Du and D. H. Nguyen,
Dynamics of kolmogorov systems of competitive type under the telegraph noise, Journal of Differential Equations, 250 (2011), 386-409.
doi: 10.1016/j.jde.2010.08.023. |
[11] |
Y. Dumont and F. Chiroleu, Vector control for the Chikungunya disease, Mathematical Biosciences & Engineering, 7 (2010), 313.
doi: 10.3934/mbe.2010.7.313. |
[12] |
A. Gray, D. Greenhalgh, X. Mao and J. Pan,
The sis epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[13] |
Q. He and G. Yin,
Large deviations for multi-scale markovian switching systems with a small diffusion, Asymptotic Analysis, 87 (2014), 123-145.
doi: 10.3233/ASY-131198. |
[14] |
A. Hening, D. H. Nguyen, et al., Coexistence and extinction for stochastic kolmogorov systems, Annals of Applied Probability, 28 (2018), 1893–1942.
doi: 10.1214/17-AAP1347. |
[15] |
H. W. Hethcote and P. Van den Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
N. Hieu, N. Du, P. Auger and D. H. Nguyen,
Dynamical behavior of a stochastic sirs epidemic model, Mathematical Modelling of Natural Phenomena, 10 (2015), 56-73.
doi: 10.1051/mmnp/201510205. |
[17] |
J. Hui and L. Chen, Impulsive vaccination of sir epidemic models with nonlinear incidence rates, Discrete & Continuous Dynamical Systems-B, 4 (2004), 595.
doi: 10.3934/dcdsb.2004.4.595. |
[18] |
M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Springer Science & Business Media, 2006. |
[19] |
M. Liu, X. He and J. Yu,
Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87-104.
doi: 10.1016/j.nahs.2017.10.004. |
[20] |
Q. Lu,
Stability of sirs system with random perturbations, Physica A: Statistical Mechanics and Its Applications, 388 (2009), 3677-3686.
doi: 10.1016/j.physa.2009.05.036. |
[21] |
Q. Luo and X. Mao,
Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334 (2007), 69-84.
doi: 10.1016/j.jmaa.2006.12.032. |
[22] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector-borne neglected tropical diseases, PLoS Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[23] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
[24] |
R. M. May and R. M. Anderson,
Population biology of infectious diseases: Part Ⅱ, Nature, 280 (1979), 455-461.
doi: 10.1038/280455a0. |
[25] |
A. Mishra, B. Ambrosio, S. Gakkhar and M. Aziz-Alaoui,
A network model for control of dengue epidemic using sterile insect technique., Math. Biosci. Eng., 15 (2018), 441-460.
|
[26] |
A. Mishra and S. Gakkhar,
The effects of awareness and vector control on two strains dengue dynamics, Applied Mathematics and Computation, 246 (2014), 159-167.
doi: 10.1016/j.amc.2014.07.115. |
[27] |
A. Mishra and S. Gakkhar, Non-linear dynamics of two-patch model incorporating secondary dengue infection, International Journal of Applied and Computational Mathematics, 4 (2018), 19.
doi: 10.1007/s40819-017-0460-z. |
[28] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka–Volterra models, Journal of Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[29] |
W. H. Organization, et al., Global Strategic Framework for Integrated Vector Management, Technical report, World Health Organization, 2004. |
[30] |
Y. Shen, Mathematical models of dengue fever and measures to control it, Ph.D thesis, Florida State University in Tallahassee, 2014. |
[31] |
C. Sun, W. Yang, J. Arino and K. Khan,
Effect of media-induced social distancing on disease transmission in a two patch setting, Mathematical Biosciences, 230 (2011), 87-95.
doi: 10.1016/j.mbs.2011.01.005. |
[32] |
H. Yang, H. Wei and X. Li,
Global stability of an epidemic model for vector-borne disease, Journal of Systems Science and Complexity, 23 (2010), 279-292.
doi: 10.1007/s11424-010-8436-7. |
show all references
References:
[1] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[2] |
Y. Asai, X. Han and P. E. Kloeden, Dynamics of Zika virus epidemic in random environment, in Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, 2019,665–684. |
[3] |
K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic sirs model with interval parameters, Discrete & Continuous Dynamical Systems-B, 24 (2019), 4827.
doi: 10.3934/dcdsb.2019033. |
[4] |
M. Benaim, Stochastic persistence, preprint, arXiv: 1806.08450. |
[5] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Annales de l'IHP Probabilités et Statistiques, 51 (2015), 1040–1075.
doi: 10.1214/14-AIHP619. |
[6] |
M. Benaïm, E. Strickler, et al., Random switching between vector fields having a common zero, The Annals of Applied Probability, 29 (2019), 326-375.
doi: 10.1214/18-AAP1418. |
[7] |
D. Bichara, Effects of migration on vector-borne diseases with forward and backward stage progression, preprint, arXiv: 1810.06777.
doi: 10.3934/dcdsb.2019140. |
[8] |
Z. Cao, X. Liu, X. Wen, L. Liu and L. Zu,
A regime-switching sir epidemic model with a ratio-dependent incidence rate and degenerate diffusion, Scientific Reports, 9 (2019), 1-7.
doi: 10.1186/s13662-017-1355-3. |
[9] |
M. H. Davis,
Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models, Journal of the Royal Statistical Society: Series B (Methodological), 46 (1984), 353-376.
doi: 10.1111/j.2517-6161.1984.tb01308.x. |
[10] |
N. H. Du and D. H. Nguyen,
Dynamics of kolmogorov systems of competitive type under the telegraph noise, Journal of Differential Equations, 250 (2011), 386-409.
doi: 10.1016/j.jde.2010.08.023. |
[11] |
Y. Dumont and F. Chiroleu, Vector control for the Chikungunya disease, Mathematical Biosciences & Engineering, 7 (2010), 313.
doi: 10.3934/mbe.2010.7.313. |
[12] |
A. Gray, D. Greenhalgh, X. Mao and J. Pan,
The sis epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[13] |
Q. He and G. Yin,
Large deviations for multi-scale markovian switching systems with a small diffusion, Asymptotic Analysis, 87 (2014), 123-145.
doi: 10.3233/ASY-131198. |
[14] |
A. Hening, D. H. Nguyen, et al., Coexistence and extinction for stochastic kolmogorov systems, Annals of Applied Probability, 28 (2018), 1893–1942.
doi: 10.1214/17-AAP1347. |
[15] |
H. W. Hethcote and P. Van den Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
N. Hieu, N. Du, P. Auger and D. H. Nguyen,
Dynamical behavior of a stochastic sirs epidemic model, Mathematical Modelling of Natural Phenomena, 10 (2015), 56-73.
doi: 10.1051/mmnp/201510205. |
[17] |
J. Hui and L. Chen, Impulsive vaccination of sir epidemic models with nonlinear incidence rates, Discrete & Continuous Dynamical Systems-B, 4 (2004), 595.
doi: 10.3934/dcdsb.2004.4.595. |
[18] |
M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Springer Science & Business Media, 2006. |
[19] |
M. Liu, X. He and J. Yu,
Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87-104.
doi: 10.1016/j.nahs.2017.10.004. |
[20] |
Q. Lu,
Stability of sirs system with random perturbations, Physica A: Statistical Mechanics and Its Applications, 388 (2009), 3677-3686.
doi: 10.1016/j.physa.2009.05.036. |
[21] |
Q. Luo and X. Mao,
Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334 (2007), 69-84.
doi: 10.1016/j.jmaa.2006.12.032. |
[22] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector-borne neglected tropical diseases, PLoS Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[23] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
[24] |
R. M. May and R. M. Anderson,
Population biology of infectious diseases: Part Ⅱ, Nature, 280 (1979), 455-461.
doi: 10.1038/280455a0. |
[25] |
A. Mishra, B. Ambrosio, S. Gakkhar and M. Aziz-Alaoui,
A network model for control of dengue epidemic using sterile insect technique., Math. Biosci. Eng., 15 (2018), 441-460.
|
[26] |
A. Mishra and S. Gakkhar,
The effects of awareness and vector control on two strains dengue dynamics, Applied Mathematics and Computation, 246 (2014), 159-167.
doi: 10.1016/j.amc.2014.07.115. |
[27] |
A. Mishra and S. Gakkhar, Non-linear dynamics of two-patch model incorporating secondary dengue infection, International Journal of Applied and Computational Mathematics, 4 (2018), 19.
doi: 10.1007/s40819-017-0460-z. |
[28] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka–Volterra models, Journal of Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[29] |
W. H. Organization, et al., Global Strategic Framework for Integrated Vector Management, Technical report, World Health Organization, 2004. |
[30] |
Y. Shen, Mathematical models of dengue fever and measures to control it, Ph.D thesis, Florida State University in Tallahassee, 2014. |
[31] |
C. Sun, W. Yang, J. Arino and K. Khan,
Effect of media-induced social distancing on disease transmission in a two patch setting, Mathematical Biosciences, 230 (2011), 87-95.
doi: 10.1016/j.mbs.2011.01.005. |
[32] |
H. Yang, H. Wei and X. Li,
Global stability of an epidemic model for vector-borne disease, Journal of Systems Science and Complexity, 23 (2010), 279-292.
doi: 10.1007/s11424-010-8436-7. |




[1] |
Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control and Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493 |
[2] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[3] |
Yanzhao Cao, Dawit Denu. Analysis of stochastic vector-host epidemic model with direct transmission. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2109-2127. doi: 10.3934/dcdsb.2016039 |
[4] |
Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048 |
[5] |
Yantao Luo, Zhidong Teng, Xiao-Qiang Zhao. Transmission dynamics of a general temporal-spatial vector-host epidemic model with an application to the dengue fever in Guangdong, China. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022069 |
[6] |
Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335 |
[7] |
Tzy-Wei Hwang, Yang Kuang. Host Extinction Dynamics in a Simple Parasite-Host Interaction Model. Mathematical Biosciences & Engineering, 2005, 2 (4) : 743-751. doi: 10.3934/mbe.2005.2.743 |
[8] |
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 |
[9] |
Kaifa Wang, Yang Kuang. Fluctuation and extinction dynamics in host-microparasite systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1537-1548. doi: 10.3934/cpaa.2011.10.1537 |
[10] |
Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457 |
[11] |
Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124 |
[12] |
Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 |
[13] |
Daniel Franco, Chris Guiver, Phoebe Smith, Stuart Townley. A switching feedback control approach for persistence of managed resources. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1765-1787. doi: 10.3934/dcdsb.2021109 |
[14] |
Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209 |
[15] |
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 |
[16] |
Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809 |
[17] |
Naveen K. Vaidya, Feng-Bin Wang. Persistence of mosquito vector and dengue: Impact of seasonal and diurnal temperature variations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 393-420. doi: 10.3934/dcdsb.2021048 |
[18] |
Miaoran Yao, Yongxin Zhang, Wendi Wang. Bifurcation analysis for an in-host Mycobacterium tuberculosis model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2299-2322. doi: 10.3934/dcdsb.2020324 |
[19] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[20] |
S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]