January  2022, 27(1): 45-72. doi: 10.3934/dcdsb.2021032

Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $

University of Monastir, Faculty of Sciences, Research Laboratory: Analysis, Probability and Fractals, The Environment Avenue, 5019 Monastir, Tunisia

Received  June 2020 Revised  December 2020 Published  January 2022 Early access  February 2021

We study the long-time behaviour of the solutions to a nonlinear damped anisotropic sixth-order Schrödinger type equation in
$ \mathbb{R}^2 $
that reads
$ u_t+i\Delta u-i \left(\partial_y^4 u-\partial_y^6 u\right)+ig(|u|^2)u+\gamma u = f\,,\;\;(t,(x,y))\in \mathbb{R}\times \mathbb{R}^2\,. $
We prove that this behaviour is described by the existence of regular global attractor in an anisotropic Sobolev space with finite fractal dimension.
Citation: Brahim Alouini. Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 45-72. doi: 10.3934/dcdsb.2021032
References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[2]

B. Alouini, Finite dimensional global attractor for a dissipative anisotropic fourth order Schrödinger equation, Journal of Differential Equations, 266 (2019), 6037-6067.  doi: 10.1016/j.jde.2018.10.044.  Google Scholar

[3]

B. Alouini, A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.  doi: 10.1002/mma.6709.  Google Scholar

[4]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[5]

A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E, 93 (2016), 012206. doi: 10.1103/PhysRevE.93.012206.  Google Scholar

[6]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[7]

O. V. Besov, V. P. Il'in and S. M. Nikol'ski ĭ, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, I, 1978.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008. doi: 10.1090/memo/0912.  Google Scholar

[11]

S. Cui and S. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., 304 (2005), 683-702.  doi: 10.1016/j.jmaa.2004.09.049.  Google Scholar

[12]

G. Fibich and G. Papanicolao, A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A, 239 (1998), 167-173.  doi: 10.1016/S0375-9601(97)00941-9.  Google Scholar

[13]

G. FibichB. Ilan and S. Schochet, Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, 16 (2003), 1809-1821.  doi: 10.1088/0951-7715/16/5/314.  Google Scholar

[14]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.   Google Scholar

[15]

C. Guo and S. Cui, Solvability of the Cauchy problem of non-isotropic Schrödinger equations in Sobolev spaces, Nonlinear Analysis, 68 (2008), 768-780.  doi: 10.1016/j.na.2006.11.033.  Google Scholar

[16]

C. GuoX. Zhao and X. Wei, Cauchy problem for higher-order Schrödinger equations in aniosotropic Sobolev space, App. Anal., 88 (2009), 1329-1338.  doi: 10.1080/00036810903277127.  Google Scholar

[17]

V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[18]

Z. Lan and B. Guo, Conservation laws, modulation instability and solitons interactions for a nonlinear Schrödinger equation with the sextic operators in an optical fiber, Optical and Quantum Electronics, 50 (2018). doi: 10.1007/s11082-018-1597-7.  Google Scholar

[19]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

P. V. Mamyshev and S. V. Chernikov, Ultrashort pulse propagation in optics fibers, Optics Letters, 15 (1990), 1076-1078.  doi: 10.1364/OL.15.001076.  Google Scholar

[22]

B. Pausader, Global wellposedness and scattering for the defocusing energy critical fourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[23]

B. Pausader, The cubic fourth-order Schrödinger equation, J. of Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[24]

G. Raugel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, 2, North-Holland, (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[25] J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.  doi: 10.1115/1.1579456.  Google Scholar
[26]

Y. V. Sedletsky and I. S. Gandzha, A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains, Nonlinear Dyamics, 94 (2018), 1921-1932.  doi: 10.1007/s11071-018-4465-x.  Google Scholar

[27] E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Monographs in Harmonic Analysis, 43, Princeton University Press, New Jersey, 1993.   Google Scholar
[28]

J. Su and Y. Gao, Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber, The European Physical Journal Plus, 132 (2017). doi: 10.1140/epjp/i2017-11308-1.  Google Scholar

[29]

H. Su and C. Guo, The solution of anisotropic sixth-order Schrödinger equation, Math. Meth. Appl. Sci., 43 (2020), 1868-1891.  doi: 10.1002/mma.6009.  Google Scholar

[30]

W. Sun, Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers, Annalen der Physik, 529 (2017), 1600227. doi: 10.1002/andp.201600227.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.  doi: 10.1090/S0002-9904-1975-13790-6.  Google Scholar

[33]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk. SSSR, 275 (1984), 780-783.   Google Scholar

[34]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[35]

Y. Yue, L. Huang and Y. Chen, Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation, (2019). Available from: https://arXiv.org/pdf/1908.04941.pdf doi: 10.1016/j.cnsns.2020.105284.  Google Scholar

show all references

References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[2]

B. Alouini, Finite dimensional global attractor for a dissipative anisotropic fourth order Schrödinger equation, Journal of Differential Equations, 266 (2019), 6037-6067.  doi: 10.1016/j.jde.2018.10.044.  Google Scholar

[3]

B. Alouini, A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.  doi: 10.1002/mma.6709.  Google Scholar

[4]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.  Google Scholar

[5]

A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E, 93 (2016), 012206. doi: 10.1103/PhysRevE.93.012206.  Google Scholar

[6]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[7]

O. V. Besov, V. P. Il'in and S. M. Nikol'ski ĭ, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, I, 1978.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008. doi: 10.1090/memo/0912.  Google Scholar

[11]

S. Cui and S. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., 304 (2005), 683-702.  doi: 10.1016/j.jmaa.2004.09.049.  Google Scholar

[12]

G. Fibich and G. Papanicolao, A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A, 239 (1998), 167-173.  doi: 10.1016/S0375-9601(97)00941-9.  Google Scholar

[13]

G. FibichB. Ilan and S. Schochet, Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, 16 (2003), 1809-1821.  doi: 10.1088/0951-7715/16/5/314.  Google Scholar

[14]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.   Google Scholar

[15]

C. Guo and S. Cui, Solvability of the Cauchy problem of non-isotropic Schrödinger equations in Sobolev spaces, Nonlinear Analysis, 68 (2008), 768-780.  doi: 10.1016/j.na.2006.11.033.  Google Scholar

[16]

C. GuoX. Zhao and X. Wei, Cauchy problem for higher-order Schrödinger equations in aniosotropic Sobolev space, App. Anal., 88 (2009), 1329-1338.  doi: 10.1080/00036810903277127.  Google Scholar

[17]

V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[18]

Z. Lan and B. Guo, Conservation laws, modulation instability and solitons interactions for a nonlinear Schrödinger equation with the sextic operators in an optical fiber, Optical and Quantum Electronics, 50 (2018). doi: 10.1007/s11082-018-1597-7.  Google Scholar

[19]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

P. V. Mamyshev and S. V. Chernikov, Ultrashort pulse propagation in optics fibers, Optics Letters, 15 (1990), 1076-1078.  doi: 10.1364/OL.15.001076.  Google Scholar

[22]

B. Pausader, Global wellposedness and scattering for the defocusing energy critical fourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[23]

B. Pausader, The cubic fourth-order Schrödinger equation, J. of Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[24]

G. Raugel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, 2, North-Holland, (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[25] J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.  doi: 10.1115/1.1579456.  Google Scholar
[26]

Y. V. Sedletsky and I. S. Gandzha, A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains, Nonlinear Dyamics, 94 (2018), 1921-1932.  doi: 10.1007/s11071-018-4465-x.  Google Scholar

[27] E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Monographs in Harmonic Analysis, 43, Princeton University Press, New Jersey, 1993.   Google Scholar
[28]

J. Su and Y. Gao, Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber, The European Physical Journal Plus, 132 (2017). doi: 10.1140/epjp/i2017-11308-1.  Google Scholar

[29]

H. Su and C. Guo, The solution of anisotropic sixth-order Schrödinger equation, Math. Meth. Appl. Sci., 43 (2020), 1868-1891.  doi: 10.1002/mma.6009.  Google Scholar

[30]

W. Sun, Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers, Annalen der Physik, 529 (2017), 1600227. doi: 10.1002/andp.201600227.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.  doi: 10.1090/S0002-9904-1975-13790-6.  Google Scholar

[33]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk. SSSR, 275 (1984), 780-783.   Google Scholar

[34]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[35]

Y. Yue, L. Huang and Y. Chen, Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation, (2019). Available from: https://arXiv.org/pdf/1908.04941.pdf doi: 10.1016/j.cnsns.2020.105284.  Google Scholar

[1]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[2]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[3]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[4]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[5]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[6]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088

[7]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[8]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[9]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[10]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[11]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[12]

Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202

[13]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[14]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[15]

Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control & Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015

[16]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[17]

Xinmin Xiang. The long-time behaviour for nonlinear Schrödinger equation and its rational pseudospectral approximation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 469-488. doi: 10.3934/dcdsb.2005.5.469

[18]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[19]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[20]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (181)
  • HTML views (358)
  • Cited by (0)

Other articles
by authors

[Back to Top]