doi: 10.3934/dcdsb.2021033
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Approximate dynamics of a class of stochastic wave equations with white noise

1. 

School of Mathematical Science, and V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu, 610068, China

2. 

College of Management Science, Chengdu University of Technology, Chengdu, 610059, China

* Corresponding author: Guanggan Chen

Received  August 2020 Revised  November 2020 Early access February 2021

Fund Project: The first author is supported by the National Science Foundation of China (Grants No. 11571245)

This work is concerned with a stochastic wave equation driven by a white noise. Borrowing from the invariant random cone and employing the backward solvability argument, this wave system is approximated by a finite dimensional wave equation with a white noise. Especially, the finite dimension is explicit, accurate and determined by the coefficient of this wave system; and further originating from an Ornstein-Uhlenbek process and applying Banach space norm estimation, this wave system is approximated by a finite dimensional wave equation with a smooth colored noise.

Citation: Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021033
References:
[1]

P. Acquistapace and B. Terreni, An approach to Itô linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stoch. Anal. Appl., 2 (1984), 131-186.  doi: 10.1080/07362998408809031.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Heidelberg, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

S. Cerrai and M. I. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probab. Theory Rel., 135 (2006), 363-394.  doi: 10.1007/s00440-005-0465-0.  Google Scholar

[4]

G. ChenJ. Duan and J. Zhang, Approximating dynamics of a singularly perturbed stochastic wave equation with a random dynamical boundary condition, SIAM. J. Math. Anal., 45 (2013), 2790-2814.  doi: 10.1137/12088968X.  Google Scholar

[5]

P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations, Ann. Appl. Probab., 16 (2006), 757-780.  doi: 10.1214/105051606000000141.  Google Scholar

[6]

P. L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab., 12 (2002), 361-381.  doi: 10.1214/aoap/1015961168.  Google Scholar

[7] G. da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[8]

J. DuanK. Lu and B. Schmalfuß, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuß, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dyn. Differ. Equ., 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[10]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396.  doi: 10.1080/07362990601139602.  Google Scholar

[11]

J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-1-4612-1536-3.  Google Scholar

[12]

Z. GuoX. YanW. Wang and X. Liu, Approximate the dynamical behavior for stochastic systems by Wong-Zakai approaching, J. Math. Anal. Appl., 457 (2018), 214-232.  doi: 10.1016/j.jmaa.2017.08.004.  Google Scholar

[13]

M. Hairer and E. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Jpn., 67 (2015), 1551-1604.  doi: 10.2969/jmsj/06741551.  Google Scholar

[14]

J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[15]

W. Horsthemke and R. Lefever, Noise-induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics, Berlin, Springer, 1984. doi: 10.1007/3-540-36852-3.  Google Scholar

[16]

N. IkedaS. Nakao and Y. Yamato, A class of approximations of Brownian motion, Publ. Res. I. Math. Sci., 13 (1977), 285-300.  doi: 10.2977/prims/1195190109.  Google Scholar

[17]

T. Jiang, X. Liu and J. Duan, A Wong-Zakai approximation for random invariant manifolds, J. Math. Phys., 58 (2017), 122701. doi: 10.1063/1.5017932.  Google Scholar

[18]

D. Kelley and I. Melbourne, Smooth approximation of stochastic differential equations, Ann. Probab., 44 (2016), 479-520.  doi: 10.1214/14-AOP979.  Google Scholar

[19]

F. Konecny, On Wong-Zakai approximation of stochastic differential equations, J. Multivariate Anal., 13 (1983), 605-611.  doi: 10.1016/0047-259X(83)90043-X.  Google Scholar

[20]

T. Kurtz and P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070.  doi: 10.1214/aop/1176990334.  Google Scholar

[21]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differ. Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[22]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differ. Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[23]

Y. Lv, W. Wang and A. J. Roberts, Approximation of the random inertial manifold of singularly perturbed stochastic wave equations, Stoch. Dynam., 14 (2014), 1350018. doi: 10.1142/S0219493713500184.  Google Scholar

[24]

X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Contributions to Nonlinear Partial Differential Equations, 2 (1985), 172-183.   Google Scholar

[25]

C. Mueller, Long time existence for the wave equation with a noise term, Ann. Probab., 25 (1997), 133-151.  doi: 10.1214/aop/1024404282.  Google Scholar

[26]

S. Nakao, On weak convergence of sequences of continuous local martingale, Ann. I. H. Poincare B, 22 (1986), 371-380.   Google Scholar

[27]

E. Pardoux and A. Piatnitski, Homogenization of a singular random one-dimensional PDE with time-varying coefficients, Ann. Probab., 40 (2012), 1316-1356.  doi: 10.1214/11-AOP650.  Google Scholar

[28]

P. Protter, Approximations of solutions of stochastic differential equations driven by semimartingales, Ann. Probab., 13 (1985), 716-743.  doi: 10.1214/aop/1176992905.  Google Scholar

[29] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅱ, Academic Press, New York, 1975.   Google Scholar
[30]

J. Shen and K. Lu, Wong-Zakai approximations and center manifolds of stochastic differential equations, J. Differ. Equations, 263 (2017), 4929-4977.  doi: 10.1016/j.jde.2017.06.005.  Google Scholar

[31]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[32]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[33]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations, J. Math. Phys., 48 (2007), 102701. doi: 10.1063/1.2800164.  Google Scholar

[34]

G. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.  Google Scholar

[35]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[36]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[37]

X. YanX. Liu and M. Yang, Random attractors of stochastic partial differential equations: A smooth approximation approach, Stoch. Anal. Appl., 35 (2017), 1007-1029.  doi: 10.1080/07362994.2017.1345317.  Google Scholar

show all references

References:
[1]

P. Acquistapace and B. Terreni, An approach to Itô linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stoch. Anal. Appl., 2 (1984), 131-186.  doi: 10.1080/07362998408809031.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Heidelberg, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

S. Cerrai and M. I. Freidlin, On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom, Probab. Theory Rel., 135 (2006), 363-394.  doi: 10.1007/s00440-005-0465-0.  Google Scholar

[4]

G. ChenJ. Duan and J. Zhang, Approximating dynamics of a singularly perturbed stochastic wave equation with a random dynamical boundary condition, SIAM. J. Math. Anal., 45 (2013), 2790-2814.  doi: 10.1137/12088968X.  Google Scholar

[5]

P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations, Ann. Appl. Probab., 16 (2006), 757-780.  doi: 10.1214/105051606000000141.  Google Scholar

[6]

P. L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab., 12 (2002), 361-381.  doi: 10.1214/aoap/1015961168.  Google Scholar

[7] G. da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[8]

J. DuanK. Lu and B. Schmalfuß, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuß, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dyn. Differ. Equ., 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[10]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396.  doi: 10.1080/07362990601139602.  Google Scholar

[11]

J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-1-4612-1536-3.  Google Scholar

[12]

Z. GuoX. YanW. Wang and X. Liu, Approximate the dynamical behavior for stochastic systems by Wong-Zakai approaching, J. Math. Anal. Appl., 457 (2018), 214-232.  doi: 10.1016/j.jmaa.2017.08.004.  Google Scholar

[13]

M. Hairer and E. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Jpn., 67 (2015), 1551-1604.  doi: 10.2969/jmsj/06741551.  Google Scholar

[14]

J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[15]

W. Horsthemke and R. Lefever, Noise-induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics, Berlin, Springer, 1984. doi: 10.1007/3-540-36852-3.  Google Scholar

[16]

N. IkedaS. Nakao and Y. Yamato, A class of approximations of Brownian motion, Publ. Res. I. Math. Sci., 13 (1977), 285-300.  doi: 10.2977/prims/1195190109.  Google Scholar

[17]

T. Jiang, X. Liu and J. Duan, A Wong-Zakai approximation for random invariant manifolds, J. Math. Phys., 58 (2017), 122701. doi: 10.1063/1.5017932.  Google Scholar

[18]

D. Kelley and I. Melbourne, Smooth approximation of stochastic differential equations, Ann. Probab., 44 (2016), 479-520.  doi: 10.1214/14-AOP979.  Google Scholar

[19]

F. Konecny, On Wong-Zakai approximation of stochastic differential equations, J. Multivariate Anal., 13 (1983), 605-611.  doi: 10.1016/0047-259X(83)90043-X.  Google Scholar

[20]

T. Kurtz and P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070.  doi: 10.1214/aop/1176990334.  Google Scholar

[21]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differ. Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[22]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differ. Equations, 244 (2008), 1-23.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[23]

Y. Lv, W. Wang and A. J. Roberts, Approximation of the random inertial manifold of singularly perturbed stochastic wave equations, Stoch. Dynam., 14 (2014), 1350018. doi: 10.1142/S0219493713500184.  Google Scholar

[24]

X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Contributions to Nonlinear Partial Differential Equations, 2 (1985), 172-183.   Google Scholar

[25]

C. Mueller, Long time existence for the wave equation with a noise term, Ann. Probab., 25 (1997), 133-151.  doi: 10.1214/aop/1024404282.  Google Scholar

[26]

S. Nakao, On weak convergence of sequences of continuous local martingale, Ann. I. H. Poincare B, 22 (1986), 371-380.   Google Scholar

[27]

E. Pardoux and A. Piatnitski, Homogenization of a singular random one-dimensional PDE with time-varying coefficients, Ann. Probab., 40 (2012), 1316-1356.  doi: 10.1214/11-AOP650.  Google Scholar

[28]

P. Protter, Approximations of solutions of stochastic differential equations driven by semimartingales, Ann. Probab., 13 (1985), 716-743.  doi: 10.1214/aop/1176992905.  Google Scholar

[29] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅱ, Academic Press, New York, 1975.   Google Scholar
[30]

J. Shen and K. Lu, Wong-Zakai approximations and center manifolds of stochastic differential equations, J. Differ. Equations, 263 (2017), 4929-4977.  doi: 10.1016/j.jde.2017.06.005.  Google Scholar

[31]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[32]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[33]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations, J. Math. Phys., 48 (2007), 102701. doi: 10.1063/1.2800164.  Google Scholar

[34]

G. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.  Google Scholar

[35]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[36]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[37]

X. YanX. Liu and M. Yang, Random attractors of stochastic partial differential equations: A smooth approximation approach, Stoch. Anal. Appl., 35 (2017), 1007-1029.  doi: 10.1080/07362994.2017.1345317.  Google Scholar

[1]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[2]

Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165

[3]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[4]

Bixiang Wang. Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021223

[5]

Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020

[6]

Renhai Wang, Bixiang Wang. Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2461-2493. doi: 10.3934/dcdsb.2020019

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[9]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[10]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[11]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[12]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

[13]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[14]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[15]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[16]

T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177

[17]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[18]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[19]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[20]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (108)
  • HTML views (287)
  • Cited by (0)

Other articles
by authors

[Back to Top]