[1]
|
J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707-723.
doi: 10.1002/bit.260100602.
|
[2]
|
C. Bartholdy, J. P. Christensen, D. Wodarz and A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus, J. Virol., 74 (2000), 10304-10311.
doi: 10.1128/JVI.74.22.10304-10311.2000.
|
[3]
|
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.
doi: 10.1073/pnas.94.13.6971.
|
[4]
|
S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz and D. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 14 (2000), 2313-2322.
doi: 10.1097/00002030-200010200-00012.
|
[5]
|
J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA, 112 (2015), 5467-5472.
doi: 10.1073/pnas.1419162112.
|
[6]
|
R. Culshaw, S. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.
doi: 10.1007/s00285-003-0245-3.
|
[7]
|
S. Debroy, B. M. Bolker and M. Martcheva, Bistability and long-term cure in a within-host model of hepatitis C, J. Biol. Systems, 19 (2011), 533-550.
doi: 10.1142/S0218339011004135.
|
[8]
|
M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430-452.
doi: 10.1007/s11538-008-9368-4.
|
[9]
|
A. V. M. Herz, S. Bonhoeffer and R. M. Anderson, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.
doi: 10.1073/pnas.93.14.7247.
|
[10]
|
J. Huang and D. Dong, Analyses of bifurcations and stability in a predator-prey system with Holling Type-IV functional response, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 167-178.
doi: 10.1007/s10255-004-0159-x.
|
[11]
|
Y. Iwasa, F. Michor and M. Nowak, Some basic properties of immune selection, J. Theoret. Biol., 229 (2004), 179-188.
doi: 10.1016/j.jtbi.2004.03.013.
|
[12]
|
H. K. Khalil, Nonlinear System, Prentice-Hall, 1996.
|
[13]
|
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
doi: 10.1016/j.bulm.2004.02.001.
|
[14]
|
J. P. La Salle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.
|
[15]
|
P. D. Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.
doi: 10.1137/S0036139902406905.
|
[16]
|
F. Li, W. Ma, Z. Jiang and D Li, Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment, Comput. Math. Methods Med., 2015 (2015), 206205.
doi: 10.1155/2015/206205.
|
[17]
|
W. Liu, Nonlinear oscillations in models of immune responses to persistent viruses, Theoret. Population Biol., 52 (1997), 224-230.
doi: 10.1006/tpbi.1997.1334.
|
[18]
|
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
doi: 10.1126/science.272.5258.74.
|
[19]
|
M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402.
doi: 10.1073/pnas.93.9.4398.
|
[20]
|
L. Perko, Differential Equation and Dynamical System, Speinger-Verlag, New York, 7 2001.
doi: 10.1007/978-1-4613-0003-8.
|
[21]
|
R. R. Regoes, D. Wodarz and M. A. Nowak, Virus dynamics: The effect of target cell limitation and immune responses on virus evolution, J. Theoret. Biol., 191 (1998), 451-462.
doi: 10.1006/jtbi.1997.0617.
|
[22]
|
F. Rothe and D. S. Shafer, Multiple bifurcation in a predator-prey system with non-monotonic predator response, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 313-347.
doi: 10.1017/S0308210500032169.
|
[23]
|
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic function response, SIAM. J. Appl. Math., 61 (2000/01), 1445-1472.
doi: 10.1137/S0036139999361896.
|
[24]
|
W. Sokol and J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1980), 2039-2049.
doi: 10.1002/bit.260230909.
|
[25]
|
J. Sotomayor, Generic bifurcation of dynamical system, Dynam. Syst., Academic Press, New York, 1973,561–582.
|
[26]
|
K. Wang, Y. Jin and A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3379-3396.
doi: 10.3934/dcdsb.2014.19.3379.
|
[27]
|
K. Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Commun. Pure Appl. Anal., 10 (2011), 1537-1548.
doi: 10.3934/cpaa.2011.10.1537.
|
[28]
|
Z. Wang and X. Liu, A chronic viral infection model with immune impairment, J. Theoret. Biol., 249 (2007), 532-542.
doi: 10.1016/j.jtbi.2007.08.017.
|
[29]
|
K. Wang, Z. Qiu and G. Deng, Study on a population dynamic model of virus infection, J. Systems Sci. Math. Sci., 23 (2003), 433-443.
|
[30]
|
S. Wang and F. Xu, Analysis of an HIV model with post-treatment control, J. Appl. Anal. Comput., 10 (2020), 667-685.
doi: 10.11948/20190081.
|
[31]
|
S. Wang and F. Xu, Thresholds and bistability in virus-immune dynamics, Appl. Math. Lett., 78 (2018), 105-111.
doi: 10.1016/j.aml.2017.11.002.
|
[32]
|
S. Wang, F. Xu and L. Rong, Bistability analysis of an HIV model with immune response, J. Biol. Systems, Vol 25 (2017), 677–695.
doi: 10.1142/S021833901740006X.
|
[33]
|
S. Wang, F. Xu and X. Song, Threshold and bistability in HIV infection models with oxidative stress, arXiv: 1808.02276 (2018).
|
[34]
|
D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytie immune responses in viral infections, Trends Immunol., 23 (2002), 194-200.
doi: 10.1016/S1471-4906(02)02189-0.
|
[35]
|
D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.
doi: 10.1099/vir.0.19118-0.
|