doi: 10.3934/dcdsb.2021036
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system

Laboratory of dynamical systems, Department of Mathematics, Faculty of sciences, University of Tlemcen, Tlemcen, BP.119, 13000 Algeria

Received  April 2020 Revised  December 2020 Early access January 2021

At the very beginning of the theory of finite dynamical systems, it was discovered that some relatively simple systems, even of ordinary differential equations, can generate very complicated (chaotic) behaviors. Furthermore these systems are extremely sensitive to perturbations, in the sense that trajectories with close but different initial data may diverge exponentially. Very often, the trajectories of such chaotic systems are localized, up to some transient process, in some subset of the phase space, the so-called strange attractors. Such subset have a very complicated geometric structure. They accumulate the nontrivial dynamics of the system.

For a distributed system, whose time evolution is usually governed by partial differential equations (PDEs), the phase space X is (a subset of) an infinite dimensional function space. We will thus speak of infinite dimensional dynamical systems. Since the global existence and uniqueness of solutions has been proven for a large class of PDEs arising from different domains as Mechanics and Physics, it is therefore natural to investigate whether the features, in particular the notion of attractor, obtained for dynamical systems generated by systems of ODEs generalizes to systems of PDEs.

In this paper we give a positive aftermath by proving the existence of pullback $ \mathcal{D} $-attractor. The key point is to find a bounded family of pullback $ \mathcal{D} $-absorbing sets then we apply the decomposition techniques and a method used in previous works to verify the pullback $ w $-$ \mathcal{D} $-limit compactness. It is based on the concept of the Kuratowski measure of noncompactness of a bounded set as well as some new estimates of the equicontinuity of the solutions.

Citation: Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021036
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. Barrow-Green, Poincaré and the three-body problem, History of Mathematics, vol. 11., Amer. Math.Soc., Providence, RI, 1997. doi: 10.1090/hmath/011.  Google Scholar

[3]

P. Bergé, Y. Pomeau and C. Vidal, L'ordre Dans le Chaos, , Hermann, Paris, 1984. Google Scholar

[4]

J. E. Bilotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc., 77 (1971), 1082-1088.  doi: 10.1090/S0002-9904-1971-12879-3.  Google Scholar

[5]

E. M. BonottoM. C. BortolanT. Caraballo and R. Collegari, Attractors for impulsive non-autonomous dynamical systems and their relations, J. D ifferential Equations, 262 (2017), 3524-3550.  doi: 10.1016/j.jde.2016.11.036.  Google Scholar

[6]

M. C. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J.Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[7]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983.  Google Scholar

[8]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[10]

J. K. Hale and S. M. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

H. Haraga and M. Yebdri, Pullback attractors for class of semilinear nonclassical diffusion equation with delay, Applied Mathematics and Nonlinear Sciences, 3 (2018), 127-150.  doi: 10.21042/AMNS.2018.1.00010.  Google Scholar

[12]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[13]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, J. Applied Mathematics and Computation, 190 (2007), 1020-1029.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[14]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris 1969.  Google Scholar

[15]

X. Liu and Y. Wang, Pullback attractors for nonautonomous 2D-Navier-Stokes models with variable elays, J. Abstract and Appl. Anal., (2013), Art. ID 425031, 10 pp. doi: 10.1155/2013/425031.  Google Scholar

[16] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.   Google Scholar
[17]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, (2nd edition), Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[18]

C. The Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, J. Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[19]

Y. Wang and P. E. Kloeden, The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain, J. Discrete and Continuous Dynamical Systems, 34 (2014), 4343-4370.  doi: 10.3934/dcds.2014.34.4343.  Google Scholar

[20]

J. Wu, Theory and Applications of Partiali Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. Barrow-Green, Poincaré and the three-body problem, History of Mathematics, vol. 11., Amer. Math.Soc., Providence, RI, 1997. doi: 10.1090/hmath/011.  Google Scholar

[3]

P. Bergé, Y. Pomeau and C. Vidal, L'ordre Dans le Chaos, , Hermann, Paris, 1984. Google Scholar

[4]

J. E. Bilotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc., 77 (1971), 1082-1088.  doi: 10.1090/S0002-9904-1971-12879-3.  Google Scholar

[5]

E. M. BonottoM. C. BortolanT. Caraballo and R. Collegari, Attractors for impulsive non-autonomous dynamical systems and their relations, J. D ifferential Equations, 262 (2017), 3524-3550.  doi: 10.1016/j.jde.2016.11.036.  Google Scholar

[6]

M. C. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J.Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[7]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983.  Google Scholar

[8]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[10]

J. K. Hale and S. M. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

H. Haraga and M. Yebdri, Pullback attractors for class of semilinear nonclassical diffusion equation with delay, Applied Mathematics and Nonlinear Sciences, 3 (2018), 127-150.  doi: 10.21042/AMNS.2018.1.00010.  Google Scholar

[12]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[13]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, J. Applied Mathematics and Computation, 190 (2007), 1020-1029.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[14]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris 1969.  Google Scholar

[15]

X. Liu and Y. Wang, Pullback attractors for nonautonomous 2D-Navier-Stokes models with variable elays, J. Abstract and Appl. Anal., (2013), Art. ID 425031, 10 pp. doi: 10.1155/2013/425031.  Google Scholar

[16] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.   Google Scholar
[17]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, (2nd edition), Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[18]

C. The Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, J. Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.  Google Scholar

[19]

Y. Wang and P. E. Kloeden, The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain, J. Discrete and Continuous Dynamical Systems, 34 (2014), 4343-4370.  doi: 10.3934/dcds.2014.34.4343.  Google Scholar

[20]

J. Wu, Theory and Applications of Partiali Functional Differential Equations, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[1]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[2]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065

[3]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[4]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[5]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[6]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[7]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[8]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[9]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[10]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[11]

Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021171

[12]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[13]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[14]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[15]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[16]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[17]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[18]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[19]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[20]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (76)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]