\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Phase portraits of the Higgins–Selkov system

  • * Corresponding author: Marzieh Mousavi

    * Corresponding author: Marzieh Mousavi

The first author is partially supported by the Ministerio de Economìa, Industria y competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajusts Universitaris i de Recerca grant 2017 SGR 1617, and the European project Dynamics-H2020-MSCA-RISE-2017-777911. The second author is supported by Isfahan University of Technology (IUT)

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • In this paper we study the dynamics of the Higgins–Selkov system

    $ \begin{equation*} \dot{x} = 1-xy^\gamma, \quad\dot{y} = \alpha y(xy^{\gamma -1}-1), \end{equation*} $

    where $ \alpha $ is a real parameter and $ \gamma>1 $ is an integer. We classify the phase portraits of this system for $ \gamma = 3, 4, 5, 6, $ in the Poincaré disc for all the values of the parameter $ \alpha $. Moreover, we determine in function of the parameter $ \alpha $ the regions of the phase space with biological meaning.

    Mathematics Subject Classification: Primary: 34C05, 34C07, 34C08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The phase portraits of system (1) for $ \gamma = 3\; \text{and}\; 5 $ in the Poincaré disc. The shaded areas correspond to the initial conditions of the orbits having a final finite evolution, so these are the initial conditions with biological meaning. In the phase portrait (c) the final behaviour is a stable singular point, and in the phase portrait (d) is a stable limit cycle

    Figure 2.  The phase portraits of system (1) for $ \gamma = 4\; \text{and}\; 6 $ in the Poincaré disc. The shaded areas correspond to the initial conditions of the orbits having a final finite evolution, so these are the initial conditions with biological meaning. In the phase portrait (c) the final behaviour is a stable singular point, and in the phase portrait (d) is a stable limit cycle

  • [1] M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.
    [2] J. C. ArteśJ. Llibre and C. Valls, Dynamics of the Higgins–Selkov and Selkov system, Chaos. Sol. Frac., 114 (2018), 145-150.  doi: 10.1016/j.chaos.2018.07.007.
    [3] P. Brechmann and A. D. Rendall, Dynamics of the Selkov oscillator, Mathematical Biosciences, 306 (2018), 152-159.  doi: 10.1016/j.mbs.2018.09.012.
    [4] P. Brechmann and A. D. Rendall, Unbounded solutions of models for glycolysis, preprint, arXiv: 2003.07140.
    [5] H. ChenJ. Llibre and Y. Tang, Global dynamics of a SD oscillator, Nonlinear Dynamics, 91 (2018), 1755-1777.  doi: 10.1007/s11071-017-3979-y.
    [6] H. Chen and Y. Tang, Proof of Arté-Llibre-Valls's conjectures for the Higgins–Selkov and Selkov systems, J. Differential Equations, 266 (2019), 7638-7657.  doi: 10.1016/j.jde.2018.12.011.
    [7] F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006.
    [8] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.
    [9] J. Higgins, A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. (USA), 51 (1964), 989-994.  doi: 10.1073/pnas.51.6.989.
    [10] T.-W. Hwang and H.-J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions, J. Phys. A, 38 (2005), 8211-8223.  doi: 10.1088/0305-4470/38/38/003.
    [11] L. Perko, Differential Equations and Dynamical Systems, 3rd Ed., Springer, 2001. doi: 10.1007/978-1-4613-0003-8.
    [12] E. E. Sel'kov, Self-oscillations in glycolysis. I. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79-86.  doi: 10.1111/j.1432-1033.1968.tb00175.x.
    [13] L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225-242.  doi: 10.1006/jsco.1998.0274.
    [14] Z. Zhang, T. Ding and W. Huang, Qualitative Theory of Differential Equations, Transl. Math. Monogr. Amer. Soc., Providence, RI, 1992.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(1008) PDF downloads(415) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return