Advanced Search
Article Contents
Article Contents

Global boundedness for a $ \mathit{\boldsymbol{N}} $-dimensional two species cancer invasion haptotaxis model with tissue remodeling

  • * Corresponding author: Bin Liu

    * Corresponding author: Bin Liu

This work is supported by National Natural Science Foundation of China grant 11971185

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the two species cancer invasion haptotaxis model with tissue remodeling

    $ \begin{equation} \begin{cases} c_{1t} = \Delta c_1-\chi_1\nabla\cdot(c_1\nabla v)-\mu_{\rm EMT}c_1+\mu_1c_1(r_1-c_1^\kappa-c_2-v),\\ c_{2t} = \Delta c_2-\chi_2\nabla\cdot(c_2\nabla v)+\mu_{\rm EMT}c_1+\mu_2c_2(r_2-c_1-c_2^\kappa-v),\\ \tau m_t = \Delta m+c_1+c_2-m,\\ v_t = -mv+\eta v(1-c_1-c_2-v) \end{cases}\nonumber \end{equation} $

    in a bounded and smooth domain $ \Omega\subset\mathbb{R}^N\;(N\geq1) $ with zero-flux boundary conditions for $ c_1,c_2 $ and $ m $, where $ \chi_i,\mu_i,r_i>0\;(i = 1,2) $, $ \eta>0 $, $ \kappa\geq1 $, $ \tau\in\{0,1\} $, and $ \mu_{\rm EMT} = \mu_{ \rm EMT}\left(c_1,c_2,m,v\right):[0,\infty)^4\rightarrow [0,\infty) $ is the epithelial-mesenchymal transition rate function such that $ \mu_{\rm EMT}\leq\mu_M $ with some constant $ \mu_M>0 $. When $ \kappa = 1 $ and $ N = 3 $, by rasing the coupled a priori estimates of $ c_1 $ and $ c_2 $ in the following way $ L^1(\Omega)\rightarrow L^2(\Omega)\rightarrow L^p(\Omega)\rightarrow L^\infty(\Omega) $ with any $ p>2 $, it is shown that for some appropriately regular and small initial data, the associated initial-boundary value problem possesses a unique globally bounded classical solution for suitably small $ r_i $ and $ \mu_M $. When $ \kappa>1 $ and $ N\geq1 $, by rasing the coupled a priori estimates of $ c_1 $ and $ c_2 $ from $ L^1(\Omega) $ to $ L^p(\Omega) $ with any $ p>1 $, then to $ L^\infty(\Omega) $, it is proved that for any reasonably regular initial data, the corresponding initial-boundary value problem admits a unique globally bounded classical solution for arbitrary $ r_i $ and $ \mu_M $. The result for $ \kappa = 1 $ complements previously known one, and the result for $ \kappa>1 $ is new.

    Mathematics Subject Classification: Primary: 35K55; Secondary: 35A01, 35A09, 35B45, 92C17.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.
    [2] A. R. A. AndersonM. A. J. ChaplainE. L. NewmanR. J. C. Steele and A. M. Thompson, Mathematical modelling of tumour invasion and metastasis,, J. Theor. Med., 2 (2000), 129-154.  doi: 10.1080/10273660008833042.
    [3] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [4] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67 (2016), Art. 11, 13 pp. doi: 10.1007/s00033-015-0601-3.
    [5] M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer Modelling and Simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269–297.
    [6] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.  doi: 10.3934/nhm.2006.1.399.
    [7] Z. Chen and Y. Tao, Large-data solutions in a three-dimensional chemotaxis-haptotaxis System with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl. Math., 163 (2019), 129-143.  doi: 10.1007/s10440-018-0216-8.
    [8] F. Dai and B. Liu, Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, J. Franklin Inst., 356 (2019), 9364-9406.  doi: 10.1016/j.jfranklin.2019.08.039.
    [9] F. Dai and B. Liu, Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling, J. Math. Anal. Appl., 483 (2020), 123583, 33pp. doi: 10.1016/j.jmaa.2019.123583.
    [10] F. Dai and B. Liu, Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, J. Differential Equations, 269 (2020), 10839-10918.  doi: 10.1016/j.jde.2020.07.027.
    [11] F. Dai and B. Liu, Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species, Appl. Math. Optim., 2020. doi: 10.1007/s00245-020-09712-0.
    [12] J. GiesselmannN. KolbeM. Lukáčová-Medvid'ová and N. Sfakianakis, Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model, Discrete contin. Dyn. Syst. Ser. B, 23 (2018), 4397-4431.  doi: 10.3934/dcdsb.2018169.
    [13] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.
    [14] D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.
    [15] N. HellmannN. Kolbe and N. Sfakianakis, A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 397-412.  doi: 10.1007/s00574-016-0147-9.
    [16] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [17] S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.
    [18] C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst., 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.
    [19] C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. Lond. Math. Soc., 50 (2018), 598-618.  doi: 10.1112/blms.12160.
    [20] Y. Ke and J. Zheng, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31 (2018), 4602-4620.  doi: 10.1088/1361-6544/aad307.
    [21] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.  doi: 10.1016/j.jmaa.2008.01.005.
    [22] O. A. Ladyžzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, , Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.
    [23] G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721-1758.  doi: 10.1142/S0218202510004775.
    [24] S. A. ManiW. Guo and M. J. Liao, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133 (2008), 704-715.  doi: 10.1016/j.cell.2008.03.027.
    [25] A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.  doi: 10.1142/S0218202510004301.
    [26] N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.
    [27] P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 263 (2017), 1269-1292.  doi: 10.1016/j.jde.2017.03.016.
    [28] P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci., 28 (2018), 2211-2235.  doi: 10.1142/S0218202518400134.
    [29] N. SfakianakisN. KolbeN. Hellmann and M. Lukáčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations, Bull. Math. Biol., 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.
    [30] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [31] Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.  doi: 10.1016/j.nonrwa.2010.06.027.
    [32] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.  doi: 10.1137/090751542.
    [33] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.
    [34] Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067-1084.  doi: 10.1017/S0308210512000571.
    [35] Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.
    [36] Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.  doi: 10.1088/0951-7715/27/6/1225.
    [37] Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.
    [38] Y. Tao and M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047-2067.  doi: 10.3934/cpaa.2019092.
    [39] Y. Tao and G. Zhu, Global solution to a model of tumor invasion, Appl. Math. Sci., 1 (2007), 2385-2398. 
    [40] C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.
    [41] Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.
    [42] M. Winker, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [43] S. WuJ. Wang and J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275-2312.  doi: 10.1142/S0218202518400158.
    [44] J. Zheng and Y. Wang, Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model, Comput. Math. Appl., 71 (2016), 1898-1909.  doi: 10.1016/j.camwa.2016.03.014.
    [45] J. Zheng, Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source, Nonlinearity, 30 (2017), 1987-2009.  doi: 10.1088/1361-6544/aa675e.
    [46] J. Zheng and Y. Ke, Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $N$ dimensions, J. Differential Equations, 266 (2019), 1969-2018.  doi: 10.1016/j.jde.2018.08.018.
  • 加载中

Article Metrics

HTML views(740) PDF downloads(309) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint