January  2022, 27(1): 311-341. doi: 10.3934/dcdsb.2021044

Global boundedness for a $ \mathit{\boldsymbol{N}} $-dimensional two species cancer invasion haptotaxis model with tissue remodeling

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China

2. 

Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China

* Corresponding author: Bin Liu

Received  September 2020 Revised  December 2020 Published  January 2022 Early access  February 2021

Fund Project: This work is supported by National Natural Science Foundation of China grant 11971185

This paper is concerned with the two species cancer invasion haptotaxis model with tissue remodeling
$ \begin{equation} \begin{cases} c_{1t} = \Delta c_1-\chi_1\nabla\cdot(c_1\nabla v)-\mu_{\rm EMT}c_1+\mu_1c_1(r_1-c_1^\kappa-c_2-v),\\ c_{2t} = \Delta c_2-\chi_2\nabla\cdot(c_2\nabla v)+\mu_{\rm EMT}c_1+\mu_2c_2(r_2-c_1-c_2^\kappa-v),\\ \tau m_t = \Delta m+c_1+c_2-m,\\ v_t = -mv+\eta v(1-c_1-c_2-v) \end{cases}\nonumber \end{equation} $
in a bounded and smooth domain
$ \Omega\subset\mathbb{R}^N\;(N\geq1) $
with zero-flux boundary conditions for
$ c_1,c_2 $
and
$ m $
, where
$ \chi_i,\mu_i,r_i>0\;(i = 1,2) $
,
$ \eta>0 $
,
$ \kappa\geq1 $
,
$ \tau\in\{0,1\} $
, and
$ \mu_{\rm EMT} = \mu_{ \rm EMT}\left(c_1,c_2,m,v\right):[0,\infty)^4\rightarrow [0,\infty) $
is the epithelial-mesenchymal transition rate function such that
$ \mu_{\rm EMT}\leq\mu_M $
with some constant
$ \mu_M>0 $
. When
$ \kappa = 1 $
and
$ N = 3 $
, by rasing the coupled a priori estimates of
$ c_1 $
and
$ c_2 $
in the following way
$ L^1(\Omega)\rightarrow L^2(\Omega)\rightarrow L^p(\Omega)\rightarrow L^\infty(\Omega) $
with any
$ p>2 $
, it is shown that for some appropriately regular and small initial data, the associated initial-boundary value problem possesses a unique globally bounded classical solution for suitably small
$ r_i $
and
$ \mu_M $
. When
$ \kappa>1 $
and
$ N\geq1 $
, by rasing the coupled a priori estimates of
$ c_1 $
and
$ c_2 $
from
$ L^1(\Omega) $
to
$ L^p(\Omega) $
with any
$ p>1 $
, then to
$ L^\infty(\Omega) $
, it is proved that for any reasonably regular initial data, the corresponding initial-boundary value problem admits a unique globally bounded classical solution for arbitrary
$ r_i $
and
$ \mu_M $
. The result for
$ \kappa = 1 $
complements previously known one, and the result for
$ \kappa>1 $
is new.
Citation: Feng Dai, Bin Liu. Global boundedness for a $ \mathit{\boldsymbol{N}} $-dimensional two species cancer invasion haptotaxis model with tissue remodeling. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 311-341. doi: 10.3934/dcdsb.2021044
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

A. R. A. AndersonM. A. J. ChaplainE. L. NewmanR. J. C. Steele and A. M. Thompson, Mathematical modelling of tumour invasion and metastasis,, J. Theor. Med., 2 (2000), 129-154.  doi: 10.1080/10273660008833042.

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67 (2016), Art. 11, 13 pp. doi: 10.1007/s00033-015-0601-3.

[5]

M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer Modelling and Simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269–297.

[6]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.  doi: 10.3934/nhm.2006.1.399.

[7]

Z. Chen and Y. Tao, Large-data solutions in a three-dimensional chemotaxis-haptotaxis System with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl. Math., 163 (2019), 129-143.  doi: 10.1007/s10440-018-0216-8.

[8]

F. Dai and B. Liu, Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, J. Franklin Inst., 356 (2019), 9364-9406.  doi: 10.1016/j.jfranklin.2019.08.039.

[9]

F. Dai and B. Liu, Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling, J. Math. Anal. Appl., 483 (2020), 123583, 33pp. doi: 10.1016/j.jmaa.2019.123583.

[10]

F. Dai and B. Liu, Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, J. Differential Equations, 269 (2020), 10839-10918.  doi: 10.1016/j.jde.2020.07.027.

[11]

F. Dai and B. Liu, Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species, Appl. Math. Optim., 2020. doi: 10.1007/s00245-020-09712-0.

[12]

J. GiesselmannN. KolbeM. Lukáčová-Medvid'ová and N. Sfakianakis, Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model, Discrete contin. Dyn. Syst. Ser. B, 23 (2018), 4397-4431.  doi: 10.3934/dcdsb.2018169.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[14]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.

[15]

N. HellmannN. Kolbe and N. Sfakianakis, A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 397-412.  doi: 10.1007/s00574-016-0147-9.

[16]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[17]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.

[18]

C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst., 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.

[19]

C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. Lond. Math. Soc., 50 (2018), 598-618.  doi: 10.1112/blms.12160.

[20]

Y. Ke and J. Zheng, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31 (2018), 4602-4620.  doi: 10.1088/1361-6544/aad307.

[21]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.  doi: 10.1016/j.jmaa.2008.01.005.

[22]

O. A. Ladyžzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, , Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.

[23]

G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721-1758.  doi: 10.1142/S0218202510004775.

[24]

S. A. ManiW. Guo and M. J. Liao, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133 (2008), 704-715.  doi: 10.1016/j.cell.2008.03.027.

[25]

A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.  doi: 10.1142/S0218202510004301.

[26]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.

[27]

P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 263 (2017), 1269-1292.  doi: 10.1016/j.jde.2017.03.016.

[28]

P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci., 28 (2018), 2211-2235.  doi: 10.1142/S0218202518400134.

[29]

N. SfakianakisN. KolbeN. Hellmann and M. Lukáčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations, Bull. Math. Biol., 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.

[30]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.

[31]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.  doi: 10.1016/j.nonrwa.2010.06.027.

[32]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.  doi: 10.1137/090751542.

[33]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[34]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067-1084.  doi: 10.1017/S0308210512000571.

[35]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.

[36]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.  doi: 10.1088/0951-7715/27/6/1225.

[37]

Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.

[38]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047-2067.  doi: 10.3934/cpaa.2019092.

[39]

Y. Tao and G. Zhu, Global solution to a model of tumor invasion, Appl. Math. Sci., 1 (2007), 2385-2398. 

[40]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.

[41]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.

[42]

M. Winker, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[43]

S. WuJ. Wang and J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275-2312.  doi: 10.1142/S0218202518400158.

[44]

J. Zheng and Y. Wang, Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model, Comput. Math. Appl., 71 (2016), 1898-1909.  doi: 10.1016/j.camwa.2016.03.014.

[45]

J. Zheng, Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source, Nonlinearity, 30 (2017), 1987-2009.  doi: 10.1088/1361-6544/aa675e.

[46]

J. Zheng and Y. Ke, Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $N$ dimensions, J. Differential Equations, 266 (2019), 1969-2018.  doi: 10.1016/j.jde.2018.08.018.

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[2]

A. R. A. AndersonM. A. J. ChaplainE. L. NewmanR. J. C. Steele and A. M. Thompson, Mathematical modelling of tumour invasion and metastasis,, J. Theor. Med., 2 (2000), 129-154.  doi: 10.1080/10273660008833042.

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.

[4]

X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67 (2016), Art. 11, 13 pp. doi: 10.1007/s00033-015-0601-3.

[5]

M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer Modelling and Simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269–297.

[6]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.  doi: 10.3934/nhm.2006.1.399.

[7]

Z. Chen and Y. Tao, Large-data solutions in a three-dimensional chemotaxis-haptotaxis System with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl. Math., 163 (2019), 129-143.  doi: 10.1007/s10440-018-0216-8.

[8]

F. Dai and B. Liu, Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, J. Franklin Inst., 356 (2019), 9364-9406.  doi: 10.1016/j.jfranklin.2019.08.039.

[9]

F. Dai and B. Liu, Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling, J. Math. Anal. Appl., 483 (2020), 123583, 33pp. doi: 10.1016/j.jmaa.2019.123583.

[10]

F. Dai and B. Liu, Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, J. Differential Equations, 269 (2020), 10839-10918.  doi: 10.1016/j.jde.2020.07.027.

[11]

F. Dai and B. Liu, Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species, Appl. Math. Optim., 2020. doi: 10.1007/s00245-020-09712-0.

[12]

J. GiesselmannN. KolbeM. Lukáčová-Medvid'ová and N. Sfakianakis, Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model, Discrete contin. Dyn. Syst. Ser. B, 23 (2018), 4397-4431.  doi: 10.3934/dcdsb.2018169.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[14]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.

[15]

N. HellmannN. Kolbe and N. Sfakianakis, A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 397-412.  doi: 10.1007/s00574-016-0147-9.

[16]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.

[17]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.

[18]

C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst., 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.

[19]

C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. Lond. Math. Soc., 50 (2018), 598-618.  doi: 10.1112/blms.12160.

[20]

Y. Ke and J. Zheng, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31 (2018), 4602-4620.  doi: 10.1088/1361-6544/aad307.

[21]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.  doi: 10.1016/j.jmaa.2008.01.005.

[22]

O. A. Ladyžzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, , Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.

[23]

G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721-1758.  doi: 10.1142/S0218202510004775.

[24]

S. A. ManiW. Guo and M. J. Liao, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133 (2008), 704-715.  doi: 10.1016/j.cell.2008.03.027.

[25]

A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.  doi: 10.1142/S0218202510004301.

[26]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.

[27]

P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 263 (2017), 1269-1292.  doi: 10.1016/j.jde.2017.03.016.

[28]

P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci., 28 (2018), 2211-2235.  doi: 10.1142/S0218202518400134.

[29]

N. SfakianakisN. KolbeN. Hellmann and M. Lukáčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations, Bull. Math. Biol., 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.

[30]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.

[31]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.  doi: 10.1016/j.nonrwa.2010.06.027.

[32]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.  doi: 10.1137/090751542.

[33]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.

[34]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067-1084.  doi: 10.1017/S0308210512000571.

[35]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.

[36]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.  doi: 10.1088/0951-7715/27/6/1225.

[37]

Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.

[38]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047-2067.  doi: 10.3934/cpaa.2019092.

[39]

Y. Tao and G. Zhu, Global solution to a model of tumor invasion, Appl. Math. Sci., 1 (2007), 2385-2398. 

[40]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.

[41]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.

[42]

M. Winker, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[43]

S. WuJ. Wang and J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275-2312.  doi: 10.1142/S0218202518400158.

[44]

J. Zheng and Y. Wang, Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model, Comput. Math. Appl., 71 (2016), 1898-1909.  doi: 10.1016/j.camwa.2016.03.014.

[45]

J. Zheng, Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source, Nonlinearity, 30 (2017), 1987-2009.  doi: 10.1088/1361-6544/aa675e.

[46]

J. Zheng and Y. Ke, Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $N$ dimensions, J. Differential Equations, 266 (2019), 1969-2018.  doi: 10.1016/j.jde.2018.08.018.

[1]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[2]

Jan Giesselmann, Niklas Kolbe, Mária Lukáčová-Medvi${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, Nikolaos Sfakianakis. Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4397-4431. doi: 10.3934/dcdsb.2018169

[3]

Meng Liu, Yuxiang Li. Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread. Communications on Pure and Applied Analysis, 2022, 21 (3) : 927-942. doi: 10.3934/cpaa.2022004

[4]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[5]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[6]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[7]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[8]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[9]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[10]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[11]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1323-1343. doi: 10.3934/dcdsb.2021092

[12]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[13]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[14]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[15]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[16]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[17]

Kazuhisa Ichikawa. Synergistic effect of blocking cancer cell invasion revealed by computer simulations. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1189-1202. doi: 10.3934/mbe.2015.12.1189

[18]

Caleb Mayer, Eric Stachura. Traveling wave solutions for a cancer stem cell invasion model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5067-5093. doi: 10.3934/dcdsb.2020333

[19]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[20]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (279)
  • HTML views (471)
  • Cited by (0)

Other articles
by authors

[Back to Top]