This paper is concerned with the asymptotic stability of wave fronts and oscillatory waves for some predator-prey models. By spectral analysis and applying Evans function method with some numerical simulations, we show that the two types of waves with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some exponentially weighted spaces.
Citation: |
[1] |
L. Allen and T. J. Bridges, Numerical exterior algebra and the compound matrix method, Numer. Math., 92 (2002), 197-232.
doi: 10.1007/s002110100365.![]() ![]() ![]() |
[2] |
K. Cheng, S. Hsu and S. Lin, Some results on global stability of a predator-prey system, J. Math. Biol., 12 (1981), 115-126.
doi: 10.1007/BF00275207.![]() ![]() ![]() |
[3] |
W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dyn. Diff. Equ., 28 (2016), 1293-1308.
doi: 10.1007/s10884-015-9472-8.![]() ![]() ![]() |
[4] |
S. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112.![]() ![]() ![]() |
[5] |
S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\mathbb{R}^4$, Trans. Am. Math. Soc., 286 (1984), 557-594.
doi: 10.2307/1999810.![]() ![]() ![]() |
[6] |
S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and pointto-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.
doi: 10.1137/0146063.![]() ![]() ![]() |
[7] |
S. Fu and J. Tsai, The evolution of traveling waves in a simple isothermal chemical system modeling quadratic autocatalysis with strong decay, J. Differential Equations, 256 (2014), 3335-3364.
doi: 10.1016/j.jde.2014.02.009.![]() ![]() ![]() |
[8] |
S. Fu and J. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.
doi: 10.1088/0951-7715/28/12/4389.![]() ![]() ![]() |
[9] |
R. Gadner and C. K. Jone, Stability of traveling wave solutions of diffusive predator-prey systems, Trans. Amer. Math. Soc., 327 (1991), 465-524.
doi: 10.1090/S0002-9947-1991-1013331-0.![]() ![]() ![]() |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York-London-Sydney, 1964.
![]() ![]() |
[11] |
C. Hsu, C. Yang, T. Yang and T. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.
doi: 10.1016/j.jde.2011.11.008.![]() ![]() ![]() |
[12] |
S. B. Hsu, On global stability of a predator-prey system, Math. Biosci., 39 (1978), 1-10.
doi: 10.1016/0025-5564(78)90025-1.![]() ![]() ![]() |
[13] |
S. Hsu and T. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201.![]() ![]() ![]() |
[14] |
J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.
doi: 10.1007/s00285-002-0171-9.![]() ![]() ![]() |
[15] |
W. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dyn. Diff. Equat., 24 (2012), 633-644.
doi: 10.1007/s10884-012-9255-4.![]() ![]() ![]() |
[16] |
V. S. Ivlev, Experimental Ecology of the Feeding of Fishes, New Haven, CT: Yale University, 1961.
![]() |
[17] |
W. Li and S. Wu, Traveling waves in a diffusive predator-prey model with holling type-III functional response, Chaos Solitons Fract., 37 (2008), 476-486.
doi: 10.1016/j.chaos.2006.09.039.![]() ![]() ![]() |
[18] |
Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems, SIAM J. Math. Anal., 44 (2012), 1474-1521.
doi: 10.1137/100814974.![]() ![]() ![]() |
[19] |
Y. Li and Y. Wu, Existence and stability of travelling front solutions for general auto-catalytic chemical reaction systems, Math. Model. Nat. Phenom., 8 (2013), 104-132.
doi: 10.1051/mmnp/20138308.![]() ![]() ![]() |
[20] |
J. D. Murray, Mathematical Biology. I. An Introduction, 3$^rd$ edition, Springer-Verlag, New York, 2002.
doi: 10.1023/A:1022616217603.![]() ![]() ![]() |
[21] |
J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, 3$^rd$ edition, Springer-Verlag, New York, 2003.
![]() ![]() |
[22] |
B. S. Ng and W. H. Reid, The compound matrix method for ordinary differential systems, J. Comput. Phys., 58 (1985), 209-228.
doi: 10.1016/0021-9991(85)90177-9.![]() ![]() ![]() |
[23] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Modern Prespectives, Springer, Berlin, 2001.
doi: 10.1007/978-1-4757-4978-6.![]() ![]() ![]() |
[24] |
B. P. Palka, An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991.
![]() ![]() |
[25] |
S. Petrovskii and H. Malchow, Critical phenomena in plankton communities: KISS model revisited, Nonlinear Analysis, 1 (2000), 37-51.
doi: 10.1016/S0362-546X(99)00392-2.![]() ![]() ![]() |
[26] |
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.
doi: 10.1137/s0036139999361896.![]() ![]() ![]() |
[27] |
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511615542.![]() ![]() ![]() |
[28] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, Providence, 1994.
doi: 10.1090/mmono/140.![]() ![]() ![]() |
[29] |
Y. Wu and N. Yan, Stability of travelling waves for autocatalytic reaction systems with strong decay, Discrete Continuous Dynam. Systems - B, 22 (2017), 1601-1633.
doi: 10.3934/dcdsb.2017033.![]() ![]() ![]() |
[30] |
Y. Wu and X. Zhao, The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems, Phys. D, 200 (2005), 325-358.
doi: 10.1016/j.physd.2004.11.010.![]() ![]() ![]() |
[31] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction Diffusion Equation, (in Chinese), second edition, Science Press, Beijing, 2011.
![]() ![]() |
The parameters
Numerical oscillatory wave profiles
Oscillatory traveling waves for model HT1
Oscillatory traveling waves for model HT2
Unboundedness of solutions