[1]
|
G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122.
doi: 10.1016/0025-5564(78)90021-4.
|
[2]
|
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.
|
[3]
|
S. Banu, W. Hu, C. Hurst and S. Tong, Dengue transmission in the asia-pacific region: Impact of climate change and socio-environmental factors, Tropical Medicine and International Health, 11 (2011), 598-607.
doi: 10.1111/j.1365-3156.2011.02734.x.
|
[4]
|
S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina and A. W. Farlow, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504-507.
doi: 10.1038/nature12060.
|
[5]
|
O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein, et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS Negl. Trop. Dis., 6 (2012), e1760.
doi: 10.1371/journal.pntd.0001760.
|
[6]
|
G. Chowell, P. Diaz-Dueñas, J. C. Miller, A. Alcazar-Velazco, J. M. Hyman, P. W. Fenimore and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci., 208 (2007), 571-589.
doi: 10.1016/j.mbs.2006.11.011.
|
[7]
|
N. C. Dom, Z. A. Latif, A. H. Ahmad, R. Ismail and B. Pradhan, Manifestation of gis tools for spatial pattern distribution analysis of dengue fever epidemic in the city of Subang Jaya, Malaysia, Environment Asia, 5 (2012), 82-92.
|
[8]
|
T. P. Endy, A. Nisalak, S. Chunsuttiwat, D. H. Libraty and S. Green, et al., Spatial and temporal circulation of dengue virus serotypes: A prospective study of primary school children in Kamphaeng Phet, Thailand, Am. J. Epidemiol., 156 (2002), 52-59.
doi: 10.1093/aje/kwf006.
|
[9]
|
D. A. Focks, E. Daniels, D. G. Haile and J. E. Keesling, A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results, Am. J. Trop. Med. Hyg., 53 (1995), 489-506.
doi: 10.4269/ajtmh.1995.53.489.
|
[10]
|
A. K. Githeko, S. W. Lindsay, U. E. Confalonieri and J. A. Patz, Climate change and vector-borne diseases: A regional analysis, Bulletin of the World Health Organization, 78 (2000), 1136-1147.
|
[11]
|
D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends in Microbiology, 10 (2002), 100-103.
doi: 10.1016/S0966-842X(01)02288-0.
|
[12]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988.
doi: 10.1090/surv/025.
|
[13]
|
M. W. Hirsch, Systems of differential equations that are competitive or cooperative Ⅱ: Convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423-439.
doi: 10.1137/0516030.
|
[14]
|
M. J. Hopp and J. A. Foley, Global-scale relationships between climate and the dengue fever vector, aedes aegypti, Climatic Change, 48 (2001), 441-463.
|
[15]
|
S. Karl, N. Halder, J. K. Kelso, S. A. Ritchie and G. J. Milne, A spatial simulation model for dengue virus infection in urban areas, BMC Infec. Dis., 14 (2014), p447.
doi: 10.1186/1471-2334-14-447.
|
[16]
|
A. Khan, M. Hassan and M. Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, Infectious Diseases of Poverty, 3 (2014), p12.
doi: 10.1186/2049-9957-3-12.
|
[17]
|
L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer, M. B. Thomas and T. W. Scott, Impact of daily temperature fluctuations on dengue virus transmission by aedes aegypti, PNAS, 108 (2011), 7460-7465.
doi: 10.1073/pnas.1101377108.
|
[18]
|
M.-T. Li, G.-Q. Sun, L. Yakob, H.-P. Zhu, Z. Jin and W.-Y. Zhang, The driving force for 2014 dengue outbreak in Guangdong, China, PLoS ONE, 11 (2016), e0166211.
doi: 10.1371/journal.pone.0166211.
|
[19]
|
L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculousis model with seasonality, Bull. Math. Biol., 72 (2010), 931-952.
doi: 10.1007/s11538-009-9477-8.
|
[20]
|
A. Nisalak, T. P. Endy, S. Nimmannitya, S. Kalayanarooj and U. Thisayakorn, et al., Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999, Am. J. Trop. Med. Hyg., 68 (2003), 191-202.
doi: 10.4269/ajtmh.2003.68.191.
|
[21]
|
M. Oki and T. Yamamoto, Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue, PLoS ONE, 7 (2010), e48258.
doi: 10.1371/journal.pone.0048258.
|
[22]
|
K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate, PNAS, 106 (2009), 13844-13849.
doi: 10.1073/pnas.0903423106.
|
[23]
|
A. Pakhare, Y. Sabde, A. Joshi, R. Jain, A. Kokane and R. Joshi, A study of spatial and meteorological determinants of dengue outbreak in bhopal city in 2014, PLoS Negl. Trop. Dis., 53 (2014), 225-233.
|
[24]
|
W. G. Panhuisa, M. Choisyb, X. Xionga, N. S. Choka and P. Akarasewid, et al., Region-wide synchrony and traveling waves of dengue across eight countries in southeast asia, Proc. Nat. Acad. Sci., 112 (2015), 13069-13074.
|
[25]
|
J. A. Patz, D. Campbell-Lendrum, T. Holloway and J. A. Foley, Impact of regional climate change on human health, Nature, 438 (2005), 310-317.
doi: 10.1038/nature04188.
|
[26]
|
S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. Morato e Silva and M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368 (2010), 5679-5693.
doi: 10.1098/rsta.2010.0278.
|
[27]
|
V. Racloz, R. Ramsey, S. Tong and W. Hu, Surveillance of dengue fever virus: A review of epidemiological models and early warning systems, PLoS Negl. Trop. Dis., 6 (2012), e1648.
doi: 10.1371/journal.pntd.0001648.
|
[28]
|
D. J. Rogers and S. E. Randolph, Climate change and vector-borne diseases, Adv. Parasitol., 62 (2006), 345-381.
doi: 10.1016/S0065-308X(05)62010-6.
|
[29]
|
T. W. Scott, A. C. Morrison, L. H. Lorenz, G. G. Clark and D. Strickman, et al., Longitudinal studies of aedes aegypti (diptera: Culicidae) in Thailand and puerto rico: Population dynamics, J. Med. Entomol., 37 (2000), 77-88.
|
[30]
|
P. M. Sheppard, W. W. Macdonald, R. J. Tonnand and B. Grab, The dynamics of an adult population of aedes aegypti in relation to dengue haemorrhagic fever in bangkok, J. Anim. Ecol., 38 (1969), 661-702.
doi: 10.2307/3042.
|
[31]
|
C. P. Simmons, J. J. Farrar, N. van Vinh Chau and B. Wills, Dengue, J. Vector Borne Dis, 6 (2012), e1648.
doi: 10.1056/NEJMra1110265.
|
[32]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society Providence, RI, 1995.
|
[33]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat, CCambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[34]
|
R. W. Sutherst, Global change and human vulnerability to vector-borne diseases, N. Engl. J. Med., 366 (2012), 1423-1432.
doi: 10.1128/CMR.17.1.136-173.2004.
|
[35]
|
M. Teurlai, C. E. Menkés, V. Cavarero, N. Degallier, E. Descloux, J.-P. Grangeon, et al., Socio-economic and climate factors associated with dengue fever spatial heterogeneity: A worked example in new caledonia, PLoS Negl. Trop. Dis., 9 (2015), e0004211.
doi: 10.1371/journal.pntd.0004211.
|
[36]
|
N. K. Vaidya, X. Li and F.-B. Wang, Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 321-349.
doi: 10.3934/dcdsb.2018099.
|
[37]
|
N. K. Vaidya and L. M. Wahl, Avian influenza dynamics under periodic environmental conditions, SIAM J. Appl. Math., 75 (2015), 443-467.
doi: 10.1137/140966642.
|
[38]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[39]
|
F.-B. Wang, S.-B. Hsu and W. Wang, Dynamics of harmful algae with seasonal temperature variations in the cove-main lake, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 313-335.
doi: 10.3934/dcdsb.2016.21.313.
|
[40]
|
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8.
|
[41]
|
WHO, Dengue Guidelines for Diagnosis, Treatment, Prevention, and Control, TDR: World Health Organization, (2009).
|
[42]
|
R. E. Woodruff and T. McMichael, Climate change and human health: All affected bit somevvmore than others, Social Alternatives, 23 (2004), 17-22.
|
[43]
|
H. M. Yang, M. de L. da G. Macoris, K. C. Galvani and M. T. M. Andrighetti, Follow up estimation of aedes aegypti entomological parameters and mathematical modellings, Biosystems, 103 (2011), 360-371.
doi: 10.1016/j.biosystems.2010.11.002.
|
[44]
|
H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti and D. M. V. Wanderley, Assessing the effects of temperature on dengue transmission, Epidemiol. Infect., 137 (2009), 1179-1187.
doi: 10.1017/S0950268809002052.
|
[45]
|
H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti and D. M. V. Wanderley, Assessing the effects of temperature on the population of aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188-1202.
doi: 10.1017/S0950268809002040.
|
[46]
|
F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085.
|
[47]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
doi: 10.1007/978-0-387-21761-1.
|
[48]
|
X.-Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonlinear Anal., 3 (1996), 43-66.
|