-
Previous Article
Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains
Existence of global weak solutions of $ p $-Navier-Stokes equations
1. | Department of Mathematics and Department of Physics, Duke University, Durham, NC 27708, USA |
2. | School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China, and, Department of Physics, Duke University, Durham, NC 27708, USA |
This paper investigates the global existence of weak solutions for the incompressible $ p $-Navier-Stokes equations in $ \mathbb{R}^d $ $ (2\leq d\leq p) $. The $ p $-Navier-Stokes equations are obtained by adding viscosity term to the $ p $-Euler equations. The diffusion added is represented by the $ p $-Laplacian of velocity and the $ p $-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-$ p $ distances with constraint density to be characteristic functions.
References:
[1] |
D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.
![]() ![]() |
[2] |
D. Breit,
Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.
doi: 10.1007/s00021-015-0203-z. |
[3] |
F. E. Browder,
Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.
doi: 10.1090/S0002-9904-1963-11068-X. |
[4] |
F. E. Browder,
Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.
doi: 10.2307/1970660. |
[5] |
X. Chen, A. Jüngel and J. -G Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[6] |
X. Chen and J. -G Liu,
Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.
doi: 10.1016/j.jde.2013.01.005. |
[7] |
X. Chen and J.-G Liu,
Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.
doi: 10.1137/120887850. |
[8] |
K. Cheng, C. Wang and S. M. Wise,
An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.
doi: 10.4208/cicp.2019.js60.10. |
[9] |
W. Cong and J.-G. Liu,
A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.
doi: 10.3934/krm.2016012. |
[10] |
E. DiBenedetto and M. A. Herrero,
Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[11] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[12] |
W. Feng, A. J. Salgado, C. Wang and S. M. Wise,
Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.
doi: 10.1016/j.jcp.2016.12.046. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[14] |
P. Hartman and G. Stampacchia,
On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.
doi: 10.1007/BF02392210. |
[15] |
J. Leray and J.-L. Lions,
Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.
|
[16] |
L. Li and J.-G. Liu,
$p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.
doi: 10.1016/j.jde.2017.12.023. |
[17] |
E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[18] |
P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019.
doi: 10.1007/978-3-030-14501-9. |
[19] |
A. Matas and J. Merker,
Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.
doi: 10.1007/s10492-012-0004-0. |
[20] |
G. J. Minty,
On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.
doi: 10.1073/pnas.50.6.1038. |
[21] |
G. J. Minty,
Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
doi: 10.1215/S0012-7094-62-02933-2. |
[22] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
show all references
References:
[1] |
D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.
![]() ![]() |
[2] |
D. Breit,
Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.
doi: 10.1007/s00021-015-0203-z. |
[3] |
F. E. Browder,
Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.
doi: 10.1090/S0002-9904-1963-11068-X. |
[4] |
F. E. Browder,
Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.
doi: 10.2307/1970660. |
[5] |
X. Chen, A. Jüngel and J. -G Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[6] |
X. Chen and J. -G Liu,
Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.
doi: 10.1016/j.jde.2013.01.005. |
[7] |
X. Chen and J.-G Liu,
Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.
doi: 10.1137/120887850. |
[8] |
K. Cheng, C. Wang and S. M. Wise,
An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.
doi: 10.4208/cicp.2019.js60.10. |
[9] |
W. Cong and J.-G. Liu,
A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.
doi: 10.3934/krm.2016012. |
[10] |
E. DiBenedetto and M. A. Herrero,
Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[11] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[12] |
W. Feng, A. J. Salgado, C. Wang and S. M. Wise,
Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.
doi: 10.1016/j.jcp.2016.12.046. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[14] |
P. Hartman and G. Stampacchia,
On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.
doi: 10.1007/BF02392210. |
[15] |
J. Leray and J.-L. Lions,
Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.
|
[16] |
L. Li and J.-G. Liu,
$p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.
doi: 10.1016/j.jde.2017.12.023. |
[17] |
E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[18] |
P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019.
doi: 10.1007/978-3-030-14501-9. |
[19] |
A. Matas and J. Merker,
Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.
doi: 10.1007/s10492-012-0004-0. |
[20] |
G. J. Minty,
On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.
doi: 10.1073/pnas.50.6.1038. |
[21] |
G. J. Minty,
Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
doi: 10.1215/S0012-7094-62-02933-2. |
[22] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
[1] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[2] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[3] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[4] |
Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593 |
[5] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060 |
[6] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[7] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[8] |
Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469 |
[9] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[10] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[11] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[12] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[13] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[14] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
[15] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[16] |
Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050 |
[17] |
Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations and Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191 |
[18] |
Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171 |
[19] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[20] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]