• Previous Article
    Aggregation and disaggregation of active particles on the unit sphere with time-dependent frequencies
  • DCDS-B Home
  • This Issue
  • Next Article
    Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination
doi: 10.3934/dcdsb.2021055
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stabilization by intermittent control for hybrid stochastic differential delay equations

1. 

School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China

2. 

College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China

3. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

4. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, U.K

* Corresponding author: Liangjian Hu

Received  August 2020 Revised  January 2021 Early access February 2021

Fund Project: The research of W.Mao was supported by the National Natural Science Foundation of China(11401261), "333 High-level Project" of Jiangsu Province and the Qing Lan Project of Jiangsu Province. The research of L.Hu was supported by the National Natural Science Foundation of China (11471071). The research of X.Mao was supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1)

This paper is concerned with stablization of hybrid differential equations by intermittent control based on delay observations. By M-matrix theory and intermittent control strategy, we establish a sufficient stability criterion on intermittent hybrid stochastic differential equations. Meantime, we show that hybrid differential equations can be stabilized by intermittent control based on delay observations if the delay time $ \tau $ is bounded by $ \tau^* $. Finally, an example is presented to illustrate our theory.

Citation: Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021055
References:
[1]

J. A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control., 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[2]

J. A. D. Appleby and X. Mao, Stochastic stabilization of functional differential equations, Syst. Control. Lett., 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[3]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control. Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[5]

W. ChenS. Xu and Y. Zou, Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control, Syst. Control. Lett., 88 (2016), 1-13.  doi: 10.1016/j.sysconle.2015.04.004.  Google Scholar

[6]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica., 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[7]

R. Z. Has'minskiǐ, Stochastic Stability of Differential Equations, Sithoff Noordhoff, Alphen aan den Rijn, Netherlands., 1980.  Google Scholar

[8]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[9]

X. Li and X. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica., 112 (2020), 108657. doi: 10.1016/j.automatica.2019.108657.  Google Scholar

[10]

L. LiuM. Perc and J. Cao, Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control, Science in China Information Sciences., 62 (2019), 1-13.  doi: 10.1007/s11432-018-9600-3.  Google Scholar

[11]

L. Liu and Z. Wu, Intermittent stochastic stabilization based on discrete-time observation with time delay, Syst. Control. Lett., 137 (2020), 1-11.  doi: 10.1016/j.sysconle.2020.104626.  Google Scholar

[12]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London., (2006). doi: 10.1142/p473.  Google Scholar

[13]

X. MaoG. G. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica., 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[14]

X. Mao, Stochastic stabilisation and destabilisation, Syst. Control. Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[15]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[16]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Trans. Automat. Control., 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.  Google Scholar

[17]

Y. Ren and W. Yin, Quasi sure exponential stabilization of nonlinear systems via intermittent G-Brownian motion, Discret. Contin. Dyn. Syst. Ser. B., 24 (2019), 5871-5883.  doi: 10.3934/dcdsb.2019110.  Google Scholar

[18]

Y. RenW. Yin and R. Sakthivel, Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-Time state observation, Automatica., 95 (2018), 146-151.  doi: 10.1016/j.automatica.2018.05.039.  Google Scholar

[19]

M. Scheutzow, Stabilization and destabilization by noise in the plane, Stocha. Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[20]

F. Wu and S. Hu, Suppression and stabilisation of noise, Int. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[21]

F. Wu and S. Hu, Stochastic Suppression and stabilization of delay differential systems, Int. J. Robust. Nonlin. Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[22]

G. YinG. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems, SIAM. J. Appl. Math., 72 (2012), 1361-1382.  doi: 10.1137/110851171.  Google Scholar

[23]

W. YinJ. Cao and Y. Ren, Quasi-sure exponential stabilization of stochastic systems induced by G-Brownian motion with discrete time feedback control, J. Math, Anal. Appl., 474 (2019), 276-289.  doi: 10.1016/j.jmaa.2019.01.045.  Google Scholar

[24]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B., 25 (2020), 4493-4513. doi: 10.3934/dcdsb.2020109.  Google Scholar

[25]

C. Yuan and J. Lygeros, Stabilization of a class of stochastic differential equations with Markovian switching, Syst. Control. Lett., 54 (2005), 819-833.  doi: 10.1016/j.sysconle.2005.01.001.  Google Scholar

[26]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Frankl. Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[27]

X. Zong, F. Wu and G. Yin, Stochastic regularization and stabilization of hybrid functional differential equations, 2015 54th IEEE Conference on Decision and Control (CDC)., (2015), 1211–1216. doi: 10.1109/CDC.2015.7402376.  Google Scholar

show all references

References:
[1]

J. A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control., 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[2]

J. A. D. Appleby and X. Mao, Stochastic stabilization of functional differential equations, Syst. Control. Lett., 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[3]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control. Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[5]

W. ChenS. Xu and Y. Zou, Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control, Syst. Control. Lett., 88 (2016), 1-13.  doi: 10.1016/j.sysconle.2015.04.004.  Google Scholar

[6]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica., 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[7]

R. Z. Has'minskiǐ, Stochastic Stability of Differential Equations, Sithoff Noordhoff, Alphen aan den Rijn, Netherlands., 1980.  Google Scholar

[8]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[9]

X. Li and X. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica., 112 (2020), 108657. doi: 10.1016/j.automatica.2019.108657.  Google Scholar

[10]

L. LiuM. Perc and J. Cao, Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control, Science in China Information Sciences., 62 (2019), 1-13.  doi: 10.1007/s11432-018-9600-3.  Google Scholar

[11]

L. Liu and Z. Wu, Intermittent stochastic stabilization based on discrete-time observation with time delay, Syst. Control. Lett., 137 (2020), 1-11.  doi: 10.1016/j.sysconle.2020.104626.  Google Scholar

[12]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London., (2006). doi: 10.1142/p473.  Google Scholar

[13]

X. MaoG. G. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica., 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[14]

X. Mao, Stochastic stabilisation and destabilisation, Syst. Control. Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[15]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[16]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Trans. Automat. Control., 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.  Google Scholar

[17]

Y. Ren and W. Yin, Quasi sure exponential stabilization of nonlinear systems via intermittent G-Brownian motion, Discret. Contin. Dyn. Syst. Ser. B., 24 (2019), 5871-5883.  doi: 10.3934/dcdsb.2019110.  Google Scholar

[18]

Y. RenW. Yin and R. Sakthivel, Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-Time state observation, Automatica., 95 (2018), 146-151.  doi: 10.1016/j.automatica.2018.05.039.  Google Scholar

[19]

M. Scheutzow, Stabilization and destabilization by noise in the plane, Stocha. Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[20]

F. Wu and S. Hu, Suppression and stabilisation of noise, Int. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[21]

F. Wu and S. Hu, Stochastic Suppression and stabilization of delay differential systems, Int. J. Robust. Nonlin. Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[22]

G. YinG. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems, SIAM. J. Appl. Math., 72 (2012), 1361-1382.  doi: 10.1137/110851171.  Google Scholar

[23]

W. YinJ. Cao and Y. Ren, Quasi-sure exponential stabilization of stochastic systems induced by G-Brownian motion with discrete time feedback control, J. Math, Anal. Appl., 474 (2019), 276-289.  doi: 10.1016/j.jmaa.2019.01.045.  Google Scholar

[24]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B., 25 (2020), 4493-4513. doi: 10.3934/dcdsb.2020109.  Google Scholar

[25]

C. Yuan and J. Lygeros, Stabilization of a class of stochastic differential equations with Markovian switching, Syst. Control. Lett., 54 (2005), 819-833.  doi: 10.1016/j.sysconle.2005.01.001.  Google Scholar

[26]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Frankl. Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[27]

X. Zong, F. Wu and G. Yin, Stochastic regularization and stabilization of hybrid functional differential equations, 2015 54th IEEE Conference on Decision and Control (CDC)., (2015), 1211–1216. doi: 10.1109/CDC.2015.7402376.  Google Scholar

Figure 1.  The sample paths of the hybrid differential equations (21)
Figure 2.  The sample paths of the intermittently hybrid SDEs (22) with $ \theta = 0.95 $
Figure 3.  The sample paths of the intermittently hybrid SDDEs (23)
[1]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021207

[2]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[3]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[4]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[5]

Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4493-4513. doi: 10.3934/dcdsb.2020109

[6]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[7]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[8]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[9]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[10]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[11]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[12]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[13]

Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092

[14]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[15]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[16]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[17]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[18]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[19]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021204

[20]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (174)
  • HTML views (331)
  • Cited by (0)

Other articles
by authors

[Back to Top]