[1]
|
A. Alphonse, C. M. Elliott and B. Stinner, An abstract framework for parabolic PDEs on evolving spaces, Port. Math., 72 (2015), 1–46.
doi: 10.4171/PM/1955.
|
[2]
|
S. Bonaccorsi and G. Guatteri, A variational approach to evolution problems with variable domains, Journal of Differential Equations, 175 (2001), 51-70.
doi: 10.1006/jdeq.2000.3959.
|
[3]
|
K. C. Cheung, L. Ling and R. Schaback, $H^2$-Convergence of least-squares kernel collocation methods, SIAM Journal on Numerical Analysis, 56 (2018), 614-633.
doi: 10.1137/16M1072863.
|
[4]
|
E. J. Crampin, E. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bulletin of Mathematical Biology, 61 (1999), 1093-1120.
doi: 10.1006/bulm.1999.0131.
|
[5]
|
E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bulletin of Mathematical Biology, 64 (2002), 747-769.
doi: 10.1006/bulm.2002.0295.
|
[6]
|
M. Dehghan, M. Abbaszadeh and A. Mohebbi, A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model, Engineering Analysis with Boundary Elements, 56 (2015), 129-144.
doi: 10.1016/j.enganabound.2015.02.005.
|
[7]
|
D. Edelmann, Finite element analysis for a diffusion equation on a harmonically evolving domain, preprint, arXiv: 2009.11105.
|
[8]
|
R. I. Fernandes, B. Bialecki and G. Fairweather, An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems on evolving domains, Journal of Computational Physics, 299 (2015), 561-580.
doi: 10.1016/j.jcp.2015.07.016.
|
[9]
|
A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234.
|
[10]
|
L. A González, J. C Vanegas and D. A Garzón, Formación de patrones en sistemas de reacción-difusión en dominios crecientes, Revista Internacional de Métodos Numéricos, 25 (2009), 145–161.
|
[11]
|
P. Gray and S. K. Scott, Sustained oscillations and other exotic patterns of behavior in isothermal reactions, Journal of Physical Chemistry, 89 (1985), 22-32.
doi: 10.1021/j100247a009.
|
[12]
|
Y. C. Hon and R. Schaback, On unsymmetric collocation by radial basis functions, Applied Mathematics and Computation, 119 (2001), 177-186.
doi: 10.1016/S0096-3003(99)00255-6.
|
[13]
|
G. Hu, Z. Qiao and T. Tang, Moving finite element simulations for reaction-diffusion systems, Advances in Applied Mathematics & Mechanics, 4 (2012), 365-381.
doi: 10.4208/aamm.10-m11180.
|
[14]
|
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Computers & Mathematics with Applications, 19 (1990), 127-145.
doi: 10.1016/0898-1221(90)90270-T.
|
[15]
|
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & Mathematics with Applications, 19 (1990), 147-161.
doi: 10.1016/0898-1221(90)90271-K.
|
[16]
|
P. E. Kloeden, J. Real and C. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, Journal of Differential Equations, 246 (2009), 4702-4730.
doi: 10.1016/j.jde.2008.11.017.
|
[17]
|
S. Kondo and R. Asai, A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.
doi: 10.1038/376765a0.
|
[18]
|
S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047.
|
[19]
|
O. Lakkis, A. Madzvamuse and C. Venkataraman, Implicit–explicit timestepping with finite element approximation of reaction–diffusion systems on evolving domains, SIAM Journal on Numerical Analysis, 51 (2013), 2309-2330.
doi: 10.1137/120880112.
|
[20]
|
W. Li, K. Rubasinghe, G. Yao and L. H. Kuo, The modified localized method of approximated particular solutions for linear and nonlinear convection-diffusion-reaction PDEs, Advances in Applied Mathematics and Mechanics, 12 (2020), 1113-1136.
doi: 10.4208/aamm.OA-2019-0033.
|
[21]
|
S. Li and L. Ling, Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions, Engineering Analysis with Boundary Elements, 105 (2019), 146-154.
doi: 10.1016/j.enganabound.2019.04.012.
|
[22]
|
S. Li and L. Ling, Complex pattern formations by spatial varying parameters, Advances in Applied Mathematics and Mechanics, 12 (2020), 1327-1352.
doi: 10.4208/aamm.OA-2018-0266.
|
[23]
|
L. Ling, R. Opfer and R. Schaback, Results on meshless collocation techniques, Engineering Analysis with Boundary Elements, 30 (2006), 247-253.
doi: 10.1016/j.enganabound.2005.08.008.
|
[24]
|
S. Liu and X. Liu, Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries, Discrete & Continuous Dynamical Systems - B, 25 (2020), 141-159.
doi: 10.3934/dcdsb.2019176.
|
[25]
|
A. Madzvamuse, H. S. Ndakwo and R. Barreira, Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete and Continuous Dynamical Systems-Series A, 36 (2016), 2133-2170.
doi: 10.3934/dcds.2016.36.2133.
|
[26]
|
A. Madzvamuse, P. K. Maini and A. J. Wathen, A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, Journal of Scientific Computing, 24 (2005), 247-262.
doi: 10.1007/s10915-004-4617-7.
|
[27]
|
A. Madzvamuse, A. J. Wathen and P. K. Maini, A moving grid finite element method applied to a model biological pattern generator, Journal of Computational Physics, 190 (2003), 478-500.
doi: 10.1016/S0021-9991(03)00294-8.
|
[28]
|
J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer, Berlin, Germany 1989.
doi: 10.1007/978-3-662-08539-4.
|
[29]
|
Z. Qiao, Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Communications in Computational Physics, 3 (2008), 406-426.
|
[30]
|
Y. Qiu, W. Chen and Q. Nie, A hybrid method for stiff reaction-diffusion equations, Discrete & Continuous Dynamical Systems - B, 24 (2019), 6387-6417.
doi: 10.3934/dcdsb.2019144.
|
[31]
|
S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, Journal of Mathematical Biology, 34 (1995), 148-176.
doi: 10.1007/BF00178771.
|
[32]
|
J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0.
|
[33]
|
C. Venkataraman, O. Lakkis and A. Madzvamuse, Global existence for semilinear reaction–diffusion systems on evolving domains, Journal of Mathematical Biology, 64 (2012), 41-67.
doi: 10.1007/s00285-011-0404-x.
|
[34]
|
Z. Xing and L. Wen, The fast implementation of the ADI-CN method for a class of two dimensional Riesz space fractional diffusion equations, Advances in Applied Mathematics and Mechanics, 11 (2019), 942-956.
doi: 10.4208/aamm.OA-2018-0162.
|