
-
Previous Article
Evaluating vaccination effectiveness of group-specific fractional-dose strategies
- DCDS-B Home
- This Issue
-
Next Article
Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays
Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response
1. | School of Liberal Arts and Sciences, North China Institute of Aerospace Engineering, Langfang, 065000, China |
2. | 283 Company, Second Research Institute of the CASIC, Beijing, 100089, China |
3. | Aerospace Science and Technology, North China Institute of Aerospace Engineering, Langfang, 065000, China |
We structure a phytoplankton zooplankton interaction system by incorporating (i) Monod-Haldane type functional response function; (ii) two delays accounting, respectively, for the gestation delay $ \tau $ of the zooplankton and the time $ \tau_1 $ required for the maturity of TPP. Firstly, we give the existence of equilibrium and property of solutions. The global convergence to the boundary equilibrium is also derived under a certain criterion. Secondly, in the case without the maturity delay $ \tau_1 $, the gestation delay $ \tau $ may lead to stability switches of the positive equilibrium. Then fixed $ \tau $ in stable interval, the effect of $ \tau_1 $ is investigated and find $ \tau_1 $ can also cause the oscillation of system. Specially, when $ \tau = \tau_1 $, under certain conditions, the periodic solution will exist with the wide range as delay away from critical value. To deal with the local stability of the positive equilibrium under a general case with all delays being positive, we use the crossing curve methods, it can obtain the stable changes of positive equilibrium in $ (\tau, \tau_1) $ plane. When choosing $ \tau $ in the unstable interval, the system still can occur Hopf bifurcation, which extends the crossing curve methods to the system exponentially decayed delay-dependent coefficients. Some numerical simulations are given to indicate the correction of the theoretical analyses.
References:
[1] |
Q. An, E. Beretta, Y. Kuang, C. Wang and H. Wang,
Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differential Equations, 266 (2019), 7073-7100.
doi: 10.1016/j.jde.2018.11.025. |
[2] |
M. Banerjee and E. Venturino,
A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 8 (2011), 239-248.
doi: 10.1016/j.ecocom.2011.04.001. |
[3] |
E. Beretta and Y. Kuang,
Geometric, stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[4] |
P. Bi and S. Ruan,
Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Applied Dynamical Systems, 12 (2013), 1847-1888.
doi: 10.1137/120887898. |
[5] |
J. Chattopadhyay, R. Sarkar and S. Mandal,
Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
doi: 10.1006/jtbi.2001.2510. |
[6] |
J. Chattopadhyay, R. Sarkar and AE Abdllaoui,
A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 19 (2002), 137-161.
doi: 10.1093/imammb/19.2.137. |
[7] |
Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed vander pol-duffing equation, Internat. J. Bifur. Chaos, 23 (2013), 1350014, 15 pages.
doi: 10.1142/S0218127413500144. |
[8] |
K. Gu, S. Niculescu and J. Chen,
On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.
doi: 10.1016/j.jmaa.2005.02.034. |
[9] |
R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Internat. J. Bifur. Chaos, 27 (2017), 1750088, 24 pages.
doi: 10.1142/S0218127417500882. |
[10] |
J. Hale and S. Lunel, Introduction to functional differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
Z. Jiang and T. Zhang,
Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with
delay, Chaos, Solitons Fractals, 104 (2017), 693-704.
doi: 10.1016/j.chaos.2017.09.030. |
[12] |
Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos., 28 (2018), 1850162, 23 pages.
doi: 10.1142/S0218127418501626. |
[13] |
Z. Jiang, J. Dai and T. Zhang, Bifurcation analysis of phytoplankton and zooplanktoninteraction system with two delays, Internat. J. Bifur. Chaos, 30 (2020), 2050039, 21 pages.
doi: 10.1142/S021812742050039X. |
[14] |
H. Jiang and Y. Song,
Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and
applications, Appl. Math. Comput., 266 (2015), 1102-1126.
doi: 10.1016/j.amc.2015.06.015. |
[15] |
Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos, 27 (2017), 1750108, 15 pages.
doi: 10.1142/S0218127417501085. |
[16] |
Z. Jiang and Y. Guo, Hopf bifurcation and stability crossing curvein a planktonic resource-consumer system with double delays, Internat. J. Bifur. Chaos, 30 (2020), 2050190, 20 pages.
doi: 10.1142/S0218127420501904. |
[17] |
S. Ma, Q. Lu and Z. Feng,
Double Hopf bifurcation for van der pol-duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338 (2008), 993-1007.
doi: 10.1016/j.jmaa.2007.05.072. |
[18] |
R. Pal, D. Basu and M. Banerjee,
Modelling of phytoplankton allelopathy with
Monod-Haldanetype functional response–A mathematical study, Biosystems, 95 (2009), 243-253.
doi: 10.1016/j.biosystems.2008.11.002. |
[19] |
Y. Qu, J. Wei and S. Ruan,
Stability and bifurcation analysis in hematopoietic stem cell
dynamics with multiple delays, Physica D., 239 (2010), 2011-2024.
doi: 10.1016/j.physd.2010.07.013. |
[20] |
S. Roy, S. Bhattacharya, P. Das and J. Chattopadhyay,
Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton:
Inferences from field observations, J. Biol. Phys., 33 (2007), 1-17.
doi: 10.1007/s10867-007-9038-z. |
[21] |
J. Wu,
Symmetric functional differential equations and neural networks with
memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.
doi: 10.1090/S0002-9947-98-02083-2. |
show all references
References:
[1] |
Q. An, E. Beretta, Y. Kuang, C. Wang and H. Wang,
Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differential Equations, 266 (2019), 7073-7100.
doi: 10.1016/j.jde.2018.11.025. |
[2] |
M. Banerjee and E. Venturino,
A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 8 (2011), 239-248.
doi: 10.1016/j.ecocom.2011.04.001. |
[3] |
E. Beretta and Y. Kuang,
Geometric, stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[4] |
P. Bi and S. Ruan,
Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Applied Dynamical Systems, 12 (2013), 1847-1888.
doi: 10.1137/120887898. |
[5] |
J. Chattopadhyay, R. Sarkar and S. Mandal,
Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
doi: 10.1006/jtbi.2001.2510. |
[6] |
J. Chattopadhyay, R. Sarkar and AE Abdllaoui,
A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 19 (2002), 137-161.
doi: 10.1093/imammb/19.2.137. |
[7] |
Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed vander pol-duffing equation, Internat. J. Bifur. Chaos, 23 (2013), 1350014, 15 pages.
doi: 10.1142/S0218127413500144. |
[8] |
K. Gu, S. Niculescu and J. Chen,
On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.
doi: 10.1016/j.jmaa.2005.02.034. |
[9] |
R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Internat. J. Bifur. Chaos, 27 (2017), 1750088, 24 pages.
doi: 10.1142/S0218127417500882. |
[10] |
J. Hale and S. Lunel, Introduction to functional differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
Z. Jiang and T. Zhang,
Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with
delay, Chaos, Solitons Fractals, 104 (2017), 693-704.
doi: 10.1016/j.chaos.2017.09.030. |
[12] |
Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos., 28 (2018), 1850162, 23 pages.
doi: 10.1142/S0218127418501626. |
[13] |
Z. Jiang, J. Dai and T. Zhang, Bifurcation analysis of phytoplankton and zooplanktoninteraction system with two delays, Internat. J. Bifur. Chaos, 30 (2020), 2050039, 21 pages.
doi: 10.1142/S021812742050039X. |
[14] |
H. Jiang and Y. Song,
Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and
applications, Appl. Math. Comput., 266 (2015), 1102-1126.
doi: 10.1016/j.amc.2015.06.015. |
[15] |
Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos, 27 (2017), 1750108, 15 pages.
doi: 10.1142/S0218127417501085. |
[16] |
Z. Jiang and Y. Guo, Hopf bifurcation and stability crossing curvein a planktonic resource-consumer system with double delays, Internat. J. Bifur. Chaos, 30 (2020), 2050190, 20 pages.
doi: 10.1142/S0218127420501904. |
[17] |
S. Ma, Q. Lu and Z. Feng,
Double Hopf bifurcation for van der pol-duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338 (2008), 993-1007.
doi: 10.1016/j.jmaa.2007.05.072. |
[18] |
R. Pal, D. Basu and M. Banerjee,
Modelling of phytoplankton allelopathy with
Monod-Haldanetype functional response–A mathematical study, Biosystems, 95 (2009), 243-253.
doi: 10.1016/j.biosystems.2008.11.002. |
[19] |
Y. Qu, J. Wei and S. Ruan,
Stability and bifurcation analysis in hematopoietic stem cell
dynamics with multiple delays, Physica D., 239 (2010), 2011-2024.
doi: 10.1016/j.physd.2010.07.013. |
[20] |
S. Roy, S. Bhattacharya, P. Das and J. Chattopadhyay,
Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton:
Inferences from field observations, J. Biol. Phys., 33 (2007), 1-17.
doi: 10.1007/s10867-007-9038-z. |
[21] |
J. Wu,
Symmetric functional differential equations and neural networks with
memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.
doi: 10.1090/S0002-9947-98-02083-2. |






Symbol | Parameter Definition | Unit |
Intrinsic growth rate of TPP | day |
|
Environmental carrying capacity | ||
Grazing efficiency of zooplankton | day |
|
Growth efficiency of zooplankton | day |
|
Natural death rate of zooplankton | day |
|
Half-saturation constant | ||
Toxin-producing rate of TPP | ||
Gestation delay of zooplankton | day |
|
Delay required for the maturity of TPP | day |
Symbol | Parameter Definition | Unit |
Intrinsic growth rate of TPP | day |
|
Environmental carrying capacity | ||
Grazing efficiency of zooplankton | day |
|
Growth efficiency of zooplankton | day |
|
Natural death rate of zooplankton | day |
|
Half-saturation constant | ||
Toxin-producing rate of TPP | ||
Gestation delay of zooplankton | day |
|
Delay required for the maturity of TPP | day |
[1] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[2] |
Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657 |
[3] |
Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397 |
[4] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[5] |
Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022082 |
[6] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[7] |
Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Bifurcation and stability of two-dimensional double-diffusive convection. Communications on Pure and Applied Analysis, 2008, 7 (1) : 23-48. doi: 10.3934/cpaa.2008.7.23 |
[8] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[9] |
Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137 |
[10] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013 |
[11] |
Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117 |
[12] |
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264 |
[13] |
Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038 |
[14] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[15] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[16] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[17] |
Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 |
[18] |
Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247 |
[19] |
Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure and Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032 |
[20] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]