[1]
|
V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math. Biol., 73 (2011), 2305-2321.
doi: 10.1007/s11538-010-9623-3.
|
[2]
|
A. C. Campi-Azevedo, P. de Almeida Estevam, J. G. Coelho-Dos-Reis and et al., Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline, BMC Infect. Dis., 14 (2014), 1-12.
doi: 10.1186/1471-2334-14-391.
|
[3]
|
Z. Chen, K. Liu, X. Liu and Y. Lou, Modelling epidemic with fractional-dose vaccination in response to limited vaccine supply, J. Theor. Biol., 468 (2020), 110085, 10pp.
doi: 10.1016/j.jtbi.2019.110085.
|
[4]
|
L. Chow, M. Fan and Z. Feng, Dynamics of a multigroup epidemiological model with group-targeted vaccination strategies, J. Theor. Biol., 291 (2011), 56-64.
doi: 10.1016/j.jtbi.2011.09.020.
|
[5]
|
J. Cui, Y. Zhang and Z. Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, J. Biol. Dyn., 13 (2019), 31-46.
doi: 10.1080/17513758.2018.1484186.
|
[6]
|
D. Ding and X. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal. Real World Appl., 12 (2011), 1991-1997.
doi: 10.1016/j.nonrwa.2010.12.015.
|
[7]
|
S. Gandon, M. J. Mackinnon, S. Nee and A. F. Read, Imperfect vaccines and the evolution of pathogen virulence, Nature, 414 (2001), 751-755.
|
[8]
|
P. Guerin, L. Næss, C. Fogg and et al., Immunogenicity of fractional doses of tetravalent A/C/Y/W135 meningococcal polysaccharide vaccine: Results from a randomized non-inferiority controlled trial in uganda, PLoS Negl. Trop. Dis., 2 (2008), e342.
doi: 10.1371/journal.pntd.0000342.
|
[9]
|
P. Haldar, P. Agrawal, P. Bhatnagar and et al., Fractional-dose inactivated poliovirus vaccine, India, Bull. World Health Organ., 97 (2019), 328-334.
doi: 10.2471/BLT.18.218370.
|
[10]
|
J. K. Hale, Ordinary Differential Equations, New York: Robert E. Krieger Publishing Company, Inc., Huntington, 1980.
|
[11]
|
M. E. Halloran, C. J. Struchiner and I. M. Longini Jr, Study designs for evaluating different efficacy and effectiveness aspects of vaccines, Am. J. Epidemiol., 146 (1997), 789-803.
doi: 10.1093/oxfordjournals.aje.a009196.
|
[12]
|
I. F. Hung, Y. Levin, K. K. To and et al., Dose sparing intradermal trivalent influenza (2010/2011) vaccination overcomes reduced immunogenicity of the 2009 H1N1 strain, Vaccine, 30 (2012), 6427-6435.
doi: 10.1016/j.vaccine.2012.08.014.
|
[13]
|
E. Jonkera, M. van Ravenhorstbs, G. Berbersb and L. Visser, Safety and immunogenicity of fractional dose intradermal injection of two quadrivalent conjugated meningococcal vaccines, Vaccine, 36 (2018), 3727-3732.
doi: 10.1016/j.vaccine.2018.05.064.
|
[14]
|
U. Joseph, M. Linster, Y. Suzuki and et al., Adaptation of pandemic H2N2 influenza a viruses in humans, J. Virol., 89 (2015), 2442-2447.
doi: 10.1128/JVI.02590-14.
|
[15]
|
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Math. Phys. Eng. Sci., 15 (1927), 700-721.
|
[16]
|
V. Künzi, J. M. Klap, M. K. Seiberling and et al., Immunogenicity and safety of low dose virosomal adjuvanted influenza vaccine administered intradermally compared to intramuscular full dose administration, Vaccine, 27 (2009), 3561-3567.
|
[17]
|
S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited, Math. Biosci. Eng., 8 (2011), 171-182.
doi: 10.3934/mbe.2011.8.171.
|
[18]
|
I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.
doi: 10.1093/aje/kwh092.
|
[19]
|
J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), 679-702.
doi: 10.1007/s11538-005-9047-7.
|
[20]
|
P. Magal, O. Seydi and G. Webb, Final size of an epidemic for a two-group SIR model, SIAM J. Appl. Math., 76 (2016), 2042-2059.
doi: 10.1137/16M1065392.
|
[21]
|
P. Magal, O. Seydi and G. Webb, Final size of a multi-group SIR epidemic model: Irreducible and non-irreducible modes of transmission, Math. Biosci., 301 (2018), 59-67.
doi: 10.1016/j.mbs.2018.03.020.
|
[22]
|
R. M. Martins, M. D. Maia, R. H. Farias, L. A. Camacho, M. S. Freire, R. Galler and et al., 7dd yellow fever vaccine: A double blind, randomized clinical trial of immunogenicity and safety on a dose-response study, Hum. Vaccin. Immunother., 9 (2013), 879-888.
|
[23]
|
A. J. Mohammed, S. Alawaidy, S. Bawikar and et al., Fractional doses of inactivated poliovirus vaccine in Oman, N. Engl. J. Med., 362 (2010), 2351-2359.
doi: 10.1056/NEJMoa0909383.
|
[24]
|
J. Mossong, N. Hens, M. Jit and et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5 (2008), e74.
doi: 10.1371/journal.pmed.0050074.
|
[25]
|
W. Qin, S. Tang and R. A. Cheke, Nonlinear pulse vaccination in an SIR epidemic model with resource limitation, Abstr. Appl. Anal., 2013 (2013), 1-13.
doi: 10.1155/2013/670263.
|
[26]
|
L. Rass and J. Radclie, Spatial Deterministic Epidemics, Rhode Island: Mathematical Surveys and Monographs, 2003.
doi: 10.1090/surv/102.
|
[27]
|
Z. B. Reneer and T. M. Ross, H2 influenza viruses: Designing vaccines against future H2 pandemics, Biochem. Soc. Trans., 47 (2019), 251-264.
doi: 10.1042/BST20180602.
|
[28]
|
S. Resik, A. Tejeda, R. W. Sutter and et al., Priming after a fractional dose of inactivated poliovirus vaccine, N. Engl. J. Med., 368 (2013), 416-424.
doi: 10.1056/NEJMoa1202541.
|
[29]
|
S. Riley, J. T. Wu and G. M. Leung, Optimizing the dose of pre-pandemic influenza vaccines to reduce the infection attack rate, PLoS Med., 4 (2007), e218.
doi: 10.1371/journal.pmed.0040218.
|
[30]
|
A. H. Roukens, K. van Halem, A. W. de Visser and L. G. Visser, Long-term protection after fractional-dose yellow fever vaccination: Follow-up study of a randomized, controlled, noninferiority trial, Ann. Intern. Med., 169 (2018), 1761-1765.
doi: 10.7326/M18-1529.
|
[31]
|
A. H. Roukens, A. C. Vossen, P. J. Bredenbeek, J. T. van Dissel and L. G. Visser, Intradermally administered yellow fever vaccine at reduced dose induces a protective immune response: A randomized controlled non-inferiority trial, PLoS One, 3 (2008), e1993.
doi: 10.1371/journal.pone.0001993.
|
[32]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, New York, 1995.
doi: 10.1017/CBO9780511530043.
|
[33]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[34]
|
J. T. Wu, C. M. Peak, G. M. Leung and M. Lipsitch, Fractional dosing of yellow fever vaccine of extend supply: A modelling study, Lancet, 388 (2016), 2904-2911.
doi: 10.1016/S0140-6736(16)31838-4.
|
[35]
|
K. N. Wyatt, G. J. Ryan and K. A. Sheerin, Reduced-dose influenza vaccine, Ann. Pharmacother, 40 (2006), 1635-1639.
doi: 10.1345/aph.1G645.
|
[36]
|
T. Yu, D. Cao and S. Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 54-70.
doi: 10.1016/j.cnsns.2018.01.011.
|