[1]
|
R. V. Abramov and A. J. Majda, Quantifying uncertainty for non-Gaussian ensembles in complex systems, SIAM Journal on Scientific Computing, 26 (2004), 411-447.
doi: 10.1137/S1064827503426310.
|
[2]
|
R. V. Abramov and A. J. Majda, Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems, Nonlinearity, 20 (2007), 2793-2821.
doi: 10.1088/0951-7715/20/12/004.
|
[3]
|
R. V. Abramov and A. J. Majda, New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems, Journal of Nonlinear Science, 18 (2008), 303-341.
doi: 10.1007/s00332-007-9011-9.
|
[4]
|
E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer Series in Computational Mathematics, 13. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-61257-2.
|
[5]
|
R. Blender, J. Wouters and V. Lucarini, Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model, Physical Review E, 88 (2013), 013201, 5pp.
doi: 10.1103/PhysRevE.88.013201.
|
[6]
|
J. G. Charney and J. G. DeVore, Multiple flow equilibria in the atmosphere and blocking, Journal of the Atmospheric Sciences, 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.
|
[7]
|
P. Chossat and R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems, World Scientific Publishing Co., Singapore, 2000.
doi: 10.1142/4062.
|
[8]
|
J. A. Dutton, The nonlinear quasi-geostrophic equation. Part Ⅱ: Predictability, recurrence and limit properties of thermally-forced and unforced flows, Journal of the Atmospheric Sciences, 33 (1976), 1431-1453.
doi: 10.1175/1520-0469(1976)033<1431:TNQGEP>2.0.CO;2.
|
[9]
|
M. R. Frank, L. Mitchell, P. S. Dodds and C. M. Danforth, Standing swells surveyed showing surprisingly stable solutions for the Lorenz'96 model, International Journal of Bifurcation and Chaos, 24 (2014), 1430027, 14pp.
doi: 10.1142/S0218127414300274.
|
[10]
|
G. Gallavotti and V. Lucarini, Equivalence of non-equilibrium ensembles and representation of friction in turbulent flows: the Lorenz 96 model, Journal of Statistical Physics, 156 (2014), 1027-1065.
doi: 10.1007/s10955-014-1051-6.
|
[11]
|
S. J. Jacobs, A note on multiple flow equilibria, Pure and Applied Geophysics, 130 (1989), 743-749.
doi: 10.1007/BF00881609.
|
[12]
|
D. L. van Kekem and A. E. Sterk, Wave propagation in the Lorenz-96 model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950008, 18 pp.
doi: 10.1142/S0218127419500081.
|
[13]
|
D. L. van Kekem and A. E. Sterk, Travelling waves and their bifurcations in the Lorenz-96 model, Physica D: Nonlinear Phenomena, 367 (2018), 38-60.
doi: 10.1016/j.physd.2017.11.008.
|
[14]
|
D. L. van Kekem and A. E. Sterk, Symmetries in the Lorenz-96 model, International Journal of Bifurcation and Chaos, 29 (2019), 195008, 18pp.
doi: 10.1142/S0218127419500081.
|
[15]
|
Y. A. Kuznetsov, Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's, SIAM Journal on Numerical Analysis, 36 (1999), 1104-1124.
doi: 10.1137/S0036142998335005.
|
[16]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
|
[17]
|
E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
|
[18]
|
E. N. Lorenz, Predictability: A problem partly solved,, in Predictability of Weather and Climate (eds. Tim Palmer and Renate Hagedorn), Cambridge University Press, (2006), 40–58.
doi: 10.1017/CBO9780511617652.004.
|
[19]
|
E. N. Lorenz and K. A. Emanuel, Optimal sites for supplementary weather observations: Simulation with a small model, Journal of the Atmospheric Sciences, 55 (1998), 399-414.
doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.
|
[20]
|
E. N. Lorenz, Designing chaotic models, Journal of the Atmospheric Sciences, 62 (2005), 1574-1587.
doi: 10.1175/JAS3430.1.
|
[21]
|
V. Lucarini and S. Sarno, A statistical mechanical approach for the computation of the climatic response to general forcings, Nonlinear Processes in Geophysics, 18 (2011), 7-28.
doi: 10.5194/npg-18-7-2011.
|
[22]
|
S. A. Orszag and J. B. McLaughlin, Evidence that random behavior is generic for nonlinear differential equations, Physica D: Nonlinear Phenomena, 1 (1980), 68-79.
doi: 10.1016/0167-2789(80)90005-6.
|
[23]
|
L. R. Petzold and A. C. Hindmarsh, Lsoda, Computing and Mathematics Research Division, Lawrence Livermore National Laboratory, Livermore, CA, 1997.
|
[24]
|
K. Soetaert, T. Petzoldt and R. W. Setzer, Solving differential equations in R: Package deSolve, Journal of Statistical Software, 33 (2010), 1-25.
doi: 10.32614/RJ-2010-013.
|
[25]
|
A. E. Sterk and D. L. van Kekem, Predictability of extreme waves in the Lorenz-96 model near intermittency and quasi-periodicity, Complexity, 2017 (2017), Art. ID 9419024, 14 pp.
doi: 10.1155/2017/9419024.
|
[26]
|
D. S. Wilks, Effects of stochastic parametrizations in the Lorenz'96 system, Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 131 (2005), 389-407.
doi: 10.1256/qj.04.03.
|