-
Previous Article
Positive solutions of singular multiparameter p-Laplacian elliptic systems
- DCDS-B Home
- This Issue
-
Next Article
Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control
Discrete-time dynamics of structured populations via Feller kernels
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA |
Feller kernels are a concise means to formalize individual structural transitions in a structured discrete-time population model. An iteroparous populations (in which generations overlap) is considered where different kernels model the structural transitions for neonates and for older individuals. Other Feller kernels are used to model competition between individuals. The spectral radius of a suitable Feller kernel is established as basic turnover number that acts as threshold between population extinction and population persistence. If the basic turnover number exceeds one, the population shows various degrees of persistence that depend on the irreducibility and other properties of the transition kernels.
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006 |
[2] |
J. M. Cushing,
On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.
doi: 10.1080/17513758.2010.491583. |
[3] |
J. M. Cushing and Y. Zhou,
The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.
doi: 10.1111/j.1939-7445.1994.tb00188.x. |
[4] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154 |
[5] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382
doi: 10.1007/BF00178324. |
[6] |
R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275.
doi: 10.4064/sm-27-3-251-268. |
[7] |
R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002
doi: 10.1017/CBO9780511755347. |
[8] |
E. A. Eager, R. Rebarber and B. Tenhumberg,
Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.
doi: 10.1007/s11538-014-9978-y. |
[9] |
S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016.
doi: 10.1007/978-3-319-28893-2. |
[10] |
S. P. Ellner and M. Rees,
Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.
doi: 10.1007/s00285-006-0044-8. |
[11] |
P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme,
Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.
doi: 10.1007/s11117-017-0503-z. |
[12] |
S. C. Hille and D. T. H. Worm,
Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.
doi: 10.1007/s00020-008-1652-z. |
[13] |
W. Jin and H. R. Thieme,
An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.
doi: 10.3934/dcdsb.2016.21.447. |
[14] |
M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136.
doi: 10.1016/0025-5564(86)90069-6. |
[15] |
U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015
doi: 10.1515/9783110365696. |
[16] |
M. A. Lewis, N. G. Marculis and Z. Shen,
Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.
doi: 10.1007/s00285-018-1206-1. |
[17] |
B. Li, M. A. Lewis and H. F. Weinberger,
Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.
doi: 10.1007/s00285-008-0175-1. |
[18] |
F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019
doi: 10.1007/978-3-030-29294-2. |
[19] |
F. Lutscher and S. V. Petrovskii,
The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.
doi: 10.1080/17513750701769899. |
[20] |
J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.
![]() ![]() |
[21] |
T. E. X. Miller, A. K. Shaw, B. D. Inouye and M. G. Neubert,
Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.
doi: 10.1086/659628. |
[22] |
J. Musgrave and F. Lutscher,
Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.
doi: 10.1007/s00285-013-0715-1. |
[23] |
C. Poetzsche,
Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.
doi: 10.1137/18M1214469. |
[24] |
V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) |
[25] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011
doi: 10.1090/gsm/118. |
[26] |
H. R. Thieme,
On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.
doi: 10.1007/BF01309313. |
[27] |
H. R. Thieme,
Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.
doi: 10.1007/s10884-015-9463-9. |
[28] |
H. R. Thieme,
From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.
doi: 10.1007/s00285-017-1114-9. |
[29] |
H. R. Thieme,
Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.
doi: 10.3934/mbe.2020061. |
[30] |
H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 |
[31] |
H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) |
[32] |
R. Wu and X.-Q. Zhao,
Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.
doi: 10.1016/j.jde.2018.01.039. |
[33] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003
doi: 10.1007/978-0-387-21761-1. |
show all references
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition, Springer, Berlin Heidelberg 1999, 2006 |
[2] |
J. M. Cushing,
On the relationship between $r$ and $R_0$ and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., 5 (2011), 277-297.
doi: 10.1080/17513758.2010.491583. |
[3] |
J. M. Cushing and Y. Zhou,
The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333.
doi: 10.1111/j.1939-7445.1994.tb00188.x. |
[4] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. Thieme, The 'cumulative' formulation of (physiologically) structured population models, in Evolution Equations, Control Theory, and Biomathematics (eds. Ph. Clément and G. Lumer), Marcel Dekker, 1994,145–154 |
[5] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction number $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365–382
doi: 10.1007/BF00178324. |
[6] |
R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268, Correction to "Convergence of Baire measures", Stud. Math., 51 (1974), 275.
doi: 10.4064/sm-27-3-251-268. |
[7] |
R. M. Dudley, Real Analysis and Probability, sec. ed., Cambridge University Press, Cambridge 2002
doi: 10.1017/CBO9780511755347. |
[8] |
E. A. Eager, R. Rebarber and B. Tenhumberg,
Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank, Bull. Math. Biol., 76 (2014), 1809-1834.
doi: 10.1007/s11538-014-9978-y. |
[9] |
S. P. Ellner, D. Z. Childs and M. Rees, Data-driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model, Springer, Cham, 2016.
doi: 10.1007/978-3-319-28893-2. |
[10] |
S. P. Ellner and M. Rees,
Stochastic stable population growth in integral projection models: Theory and application, J. Math. Biol., 54 (2007), 227-256.
doi: 10.1007/s00285-006-0044-8. |
[11] |
P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme,
Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 139-140.
doi: 10.1007/s11117-017-0503-z. |
[12] |
S. C. Hille and D. T. H. Worm,
Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, 63 (2009), 351-371.
doi: 10.1007/s00020-008-1652-z. |
[13] |
W. Jin and H. R. Thieme,
An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete and Continuous Dynamical System - B, 21 (2016), 447-470.
doi: 10.3934/dcdsb.2016.21.447. |
[14] |
M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986) 109–136.
doi: 10.1016/0025-5564(86)90069-6. |
[15] |
U. Krause, Positive Dynamical Systems in Siscrete Time. Theory, Models, and Applications, De Gruyter Studies in Mathematics, 62, De Gruyter, Berlin, 2015
doi: 10.1515/9783110365696. |
[16] |
M. A. Lewis, N. G. Marculis and Z. Shen,
Integrodifference equations in the presence of climate change: Persistence criterion, travelling waves and inside dynamics, J. Math. Biol., 77 (2018), 1649-1687.
doi: 10.1007/s00285-018-1206-1. |
[17] |
B. Li, M. A. Lewis and H. F. Weinberger,
Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.
doi: 10.1007/s00285-008-0175-1. |
[18] |
F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019
doi: 10.1007/978-3-030-29294-2. |
[19] |
F. Lutscher and S. V. Petrovskii,
The importance of census times in discrete-time growth-dispersal models, J. Biol. Dyn., 2 (2008), 55-63.
doi: 10.1080/17513750701769899. |
[20] |
J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, an Diego, 1999.
![]() ![]() |
[21] |
T. E. X. Miller, A. K. Shaw, B. D. Inouye and M. G. Neubert,
Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.
doi: 10.1086/659628. |
[22] |
J. Musgrave and F. Lutscher,
Integrodifference equations in patchy landscapes II: Population level consequences, J. Math. Biol., 69 (2014), 617-658.
doi: 10.1007/s00285-013-0715-1. |
[23] |
C. Poetzsche,
Numerical dynamics of integrodifference equations: Global attractivity in a C0-setting, SIAM J. Numer. Anal., 57 (2019), 2121-2141.
doi: 10.1137/18M1214469. |
[24] |
V. M. Shurenkov, On the relationship between spectral radii and Perron Roots, Chalmers Univ Tech and Göteborg Univ (preprint) |
[25] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence 2011
doi: 10.1090/gsm/118. |
[26] |
H. R. Thieme,
On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.
doi: 10.1007/BF01309313. |
[27] |
H. R. Thieme,
Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations, J. Dynamics and Differential Equations, 28 (2016), 1115-1144.
doi: 10.1007/s10884-015-9463-9. |
[28] |
H. R. Thieme,
From homogeneous eigenvalue problems to two-sex population dynamics, J. Math. Biol., 75 (2017), 783-804.
doi: 10.1007/s00285-017-1114-9. |
[29] |
H. R. Thieme,
Discrete-time population dynamics on the state space of measures, Math. Biosci. Engin., 17 (2020), 1168-1217.
doi: 10.3934/mbe.2020061. |
[30] |
H. R. Thieme, Persistent discrete-time dynamics on measures, in Progress on Difference Equations and Discrete Dynamical Systems, (eds. Stephen Baigent, Saber Elaydi and Martin Bohner), 59-100, Springer Proceedings in Mathematics & Statistics 341, Springer Nature Switzerland AG, 2020 |
[31] |
H. R. Thieme, Discrete-time population dynamics of spatially distributed semelparous two-sex populations, (preprint) |
[32] |
R. Wu and X.-Q. Zhao,
Propagation dynamics for a spatially periodic integrodifference competition model, J. Differential Equations, 264 (2018), 6507-6534.
doi: 10.1016/j.jde.2018.01.039. |
[33] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003
doi: 10.1007/978-0-387-21761-1. |
[1] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[2] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[3] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[4] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[5] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[6] |
Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443 |
[7] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[8] |
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 |
[9] |
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 |
[10] |
Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077 |
[11] |
Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915 |
[12] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[13] |
Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 4923-4939. doi: 10.3934/dcdsb.2021258 |
[14] |
Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243 |
[15] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[16] |
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 |
[17] |
Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041 |
[18] |
Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031 |
[19] |
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 |
[20] |
Nina Lebedeva. Number of extremal subsets in Alexandrov spaces and rigidity. Electronic Research Announcements, 2014, 21: 120-125. doi: 10.3934/era.2014.21.120 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]