doi: 10.3934/dcdsb.2021090
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns

1. 

School of Science, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China

2. 

Department of Gastroenterology, Xi'an Honghui Hospital, Xi'an, Shaanxi 710000, China

* Corresponding author: Wenbin Yang

Received  October 2020 Revised  February 2021 Early access March 2021

Fund Project: The first author is supported by NSF of China grant 12001425

In this work, we consider a diffusive tumor-CD4$ ^+ $-cytokine interactions model with immunotherapy under homogeneous Neumann boundary conditions. We first investigate the large-time behavior of nonnegative equilibria, including the system persistence and the stability conditions. We also give the existence of nonconstant positive steady states (i.e., a stationary pattern), which indicate that this stationary pattern is driven by diffusion effects. For this study, we employ the comparison principle for parabolic systems, linearization method, the method of energy integral and the Leray-Schauder degree.

Citation: Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021090
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

L. AndersonS. Jang and J. L. Yu, Qualitative behavior of systems of tumor-${\rm{CD}}4^+$-cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330-4344.  doi: 10.1002/mma.3370.  Google Scholar

[3]

F. AnsarizadehM. Singh and D. Richards, Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Modelling, 48 (2017), 96-112.  doi: 10.1016/j.apm.2017.03.045.  Google Scholar

[4]

M. A. Brown and J. Hural, Functions of IL-4 and control of its expression, Critical Reviews in Immunology, 17 (1997), 1-32.  doi: 10.1615/CritRevImmunol.v17.i1.10.  Google Scholar

[5]

F. Dai and B. Liu, Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy, J. Franklin Inst., 358 (2021), 448-473.  doi: 10.1016/j.jfranklin.2020.10.032.  Google Scholar

[6]

A. D'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Modelling, 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[7]

A. D'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[8]

A. Ducrot and J. Guo, Asymptotic behavior of solutions to a class of diffusive predator-prey systems, J. Evol. Equ., 18 (2018), 755-775.  doi: 10.1007/s00028-017-0418-y.  Google Scholar

[9]

S. HabibM. P. Carmen and S. D. Thomas, Complex dynamics of tumors: Modeling an emerging brain tumor system with coupled reaction-diffusion equations, Physica A: Statistical Mechanics and its Applications, 327 (2003), 501-524.  doi: 10.1016/S0378-4371(03)00391-1.  Google Scholar

[10]

L. E. HarringtonR. D. HattonP. R. ManganH. TurnerT. L. MurphyK. M. Murphy and C. T. Weaver, Interleukin 17-producing cd4+ effector t cells develop via a lineage distinct from the t helper type 1 and 2 lineages, Nature Immunology, 6 (2005), 1123-1132.  doi: 10.1038/ni1254.  Google Scholar

[11]

C. LinW. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[12]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[13]

J. Manimaran and L. Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, Computational and Mathematical Methods, 2 (2020), e1068, 20pp. doi: 10.1002/cmm4.1068.  Google Scholar

[14] C.-V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[15]

W. -E. Paul, Fundamental Immunology, 6$^nd$ edition, Lippincott Williams & Wilkins, Philadelphia, 2008. Google Scholar

[16] W. Raymond and M.-D. Ruddon, Cancer Biology, 4\begin{document}$^nd$\end{document} edition, Oxford University Press, Oxford, 2007.   Google Scholar
[17]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[18]

J. P. TripathiS. Abbas and M. Thakur, Dynamical analysis of a prey-predator model with Beddington-Deangelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177-196.  doi: 10.1007/s11071-014-1859-2.  Google Scholar

[19]

W. Yang, Existence and asymptotic behavior of solutions for a mathematical ecology model with herd behavior, Math. Methods Appl. Sci., 43 (2020), 5629-5644.  doi: 10.1002/mma.6301.  Google Scholar

[20]

L. Yang and S. Zhong, Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive allee effect, Comput. Appl. Math., 34 (2015), 671-690.  doi: 10.1007/s40314-014-0131-1.  Google Scholar

[21]

R. Zeng, Qualitative analysis of a strongly coupled predator-prey system with modified Holling-Tnner functional response, Bound. Value Probl., 2018 (2018), Paper No. 98, 21 pp. doi: 10.1186/s13661-018-1015-x.  Google Scholar

[22]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986.  Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

L. AndersonS. Jang and J. L. Yu, Qualitative behavior of systems of tumor-${\rm{CD}}4^+$-cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330-4344.  doi: 10.1002/mma.3370.  Google Scholar

[3]

F. AnsarizadehM. Singh and D. Richards, Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Modelling, 48 (2017), 96-112.  doi: 10.1016/j.apm.2017.03.045.  Google Scholar

[4]

M. A. Brown and J. Hural, Functions of IL-4 and control of its expression, Critical Reviews in Immunology, 17 (1997), 1-32.  doi: 10.1615/CritRevImmunol.v17.i1.10.  Google Scholar

[5]

F. Dai and B. Liu, Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy, J. Franklin Inst., 358 (2021), 448-473.  doi: 10.1016/j.jfranklin.2020.10.032.  Google Scholar

[6]

A. D'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Modelling, 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[7]

A. D'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[8]

A. Ducrot and J. Guo, Asymptotic behavior of solutions to a class of diffusive predator-prey systems, J. Evol. Equ., 18 (2018), 755-775.  doi: 10.1007/s00028-017-0418-y.  Google Scholar

[9]

S. HabibM. P. Carmen and S. D. Thomas, Complex dynamics of tumors: Modeling an emerging brain tumor system with coupled reaction-diffusion equations, Physica A: Statistical Mechanics and its Applications, 327 (2003), 501-524.  doi: 10.1016/S0378-4371(03)00391-1.  Google Scholar

[10]

L. E. HarringtonR. D. HattonP. R. ManganH. TurnerT. L. MurphyK. M. Murphy and C. T. Weaver, Interleukin 17-producing cd4+ effector t cells develop via a lineage distinct from the t helper type 1 and 2 lineages, Nature Immunology, 6 (2005), 1123-1132.  doi: 10.1038/ni1254.  Google Scholar

[11]

C. LinW. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[12]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[13]

J. Manimaran and L. Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, Computational and Mathematical Methods, 2 (2020), e1068, 20pp. doi: 10.1002/cmm4.1068.  Google Scholar

[14] C.-V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[15]

W. -E. Paul, Fundamental Immunology, 6$^nd$ edition, Lippincott Williams & Wilkins, Philadelphia, 2008. Google Scholar

[16] W. Raymond and M.-D. Ruddon, Cancer Biology, 4\begin{document}$^nd$\end{document} edition, Oxford University Press, Oxford, 2007.   Google Scholar
[17]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[18]

J. P. TripathiS. Abbas and M. Thakur, Dynamical analysis of a prey-predator model with Beddington-Deangelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177-196.  doi: 10.1007/s11071-014-1859-2.  Google Scholar

[19]

W. Yang, Existence and asymptotic behavior of solutions for a mathematical ecology model with herd behavior, Math. Methods Appl. Sci., 43 (2020), 5629-5644.  doi: 10.1002/mma.6301.  Google Scholar

[20]

L. Yang and S. Zhong, Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive allee effect, Comput. Appl. Math., 34 (2015), 671-690.  doi: 10.1007/s40314-014-0131-1.  Google Scholar

[21]

R. Zeng, Qualitative analysis of a strongly coupled predator-prey system with modified Holling-Tnner functional response, Bound. Value Probl., 2018 (2018), Paper No. 98, 21 pp. doi: 10.1186/s13661-018-1015-x.  Google Scholar

[22]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986.  Google Scholar

[1]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[2]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5681-5705. doi: 10.3934/dcdsb.2020376

[3]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[4]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[5]

Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211

[6]

Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199

[7]

Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026

[11]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[12]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[13]

Benjamin Söllner, Oliver Junge. A convergent Lagrangian discretization for $ p $-Wasserstein and flux-limited diffusion equations. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4227-4256. doi: 10.3934/cpaa.2020190

[14]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[15]

Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281

[16]

Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021051

[17]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[18]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[19]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[20]

Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (118)
  • HTML views (289)
  • Cited by (0)

Other articles
by authors

[Back to Top]