[1]
|
S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly, 87 (1980), 359-370.
doi: 10.1080/00029890.1980.11995034.
|
[2]
|
D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), 337-344.
doi: 10.1007/BF02576171.
|
[3]
|
S. Antontsev, J. $D\acute{l}az$ and H. de Oliveira, Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem, J. Math. Fluid Mech., 6 (2004), 439-461.
doi: 10.1007/s00021-004-0106-x.
|
[4]
|
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8.
|
[5]
|
D. Bresch, B. Desjardins and C. Lin, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499.
|
[6]
|
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Francaise Automat Informat. Recherche Op$\acute{e}$rationnelle S$\acute{e}$r. Rouge, 8 (1974), 129–151.
|
[7]
|
L. Chen and Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.
doi: 10.1007/s10915-011-9469-3.
|
[8]
|
W. Chen, F. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36 (2016), 897-921.
doi: 10.1093/imanum/drv012.
|
[9]
|
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051.
|
[10]
|
X. Hu, L. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362 (2019), 614-625.
doi: 10.1016/j.cam.2018.08.022.
|
[11]
|
D. Liu and K. Li, Finite element analysis of the Stokes equations with damping, Math. Numer. Sin., 32 (2010), 433-448.
|
[12]
|
M. Li, D. Shi and Y. Dai, Stabilized low order finite elements for Stokes equations with damping, J. Math. Anal. Appl., 435 (2016), 646-660.
doi: 10.1016/j.jmaa.2015.10.040.
|
[13]
|
M. Li, D. Shi, Z. Li and H. Chen, Two-level mixed finite element methods for the Navier-Stokes equations with damping, J. Math. Anal. Appl., 470 (2019), 292-307.
doi: 10.1016/j.jmaa.2018.10.002.
|
[14]
|
L. Mu, J. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), 327-342.
doi: 10.1016/j.jcp.2014.04.017.
|
[15]
|
M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM. J. Numer. Anal., 45 (2007), 1801-1813.
doi: 10.1137/050637820.
|
[16]
|
H. Peng, Q. Zhai, R. Zhang and S. Zhang, Weak Galerkin and continuous Galerkin coupled finite element methods for the Stokes-Darcy interface problem, Commun. Comput. Phys., 28 (2020), 1147-1175.
doi: 10.4208/cicp.oa-2019-0122.
|
[17]
|
D. Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp., 79 (2010), 1303-1330.
doi: 10.1090/S0025-5718-10-02333-1.
|
[18]
|
Y. Shang and J. Qin, A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 300 (2016), 182-198.
doi: 10.1016/j.cma.2015.11.013.
|
[19]
|
D. Shi and Z. Yu, Superclose and superconvergence of finite element discretizations for the Stokes equations with damping, Appl. Math., 219 (2013), 7693-7698.
doi: 10.1016/j.amc.2013.01.057.
|
[20]
|
C. Wang, J. Wang, R. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.
doi: 10.1016/j.cam.2015.12.015.
|
[21]
|
J. Wang and X. Ye, A weak Galerkin nite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003.
|
[22]
|
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4.
|
[23]
|
J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.
doi: 10.1007/s10444-015-9415-2.
|
[24]
|
R. Wang and R. Zhang, A weak Galerkin finite element method for the linear elasticity problem in mixed form, J. Comput. Math., 36 (2018), 469-491.
doi: 10.4208/jcm.1701-m2016-0733.
|
[25]
|
X. Wang, Q. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.
doi: 10.1016/j.cam.2016.04.031.
|
[26]
|
J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.
doi: 10.1137/0915016.
|
[27]
|
Q. Zhai, H. Xie, R Zhang and Z Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 26 (2019), 160-191.
doi: 10.4208/cicp.OA-2018-0201.
|
[28]
|
T. Zhang and T. Lin, A stable weak Galerkin finite element method for Stokes problem, J. Comput. Appl. Math., 333 (2018), 235-246.
doi: 10.1016/j.cam.2017.10.042.
|
[29]
|
T. Zhang and T. Lin, An analysis of a weak Galerkin finite element method for stationary Navier-Stokes problems, J. Comput. Appl. Math., 362 (2019), 484-497.
doi: 10.1016/j.cam.2018.07.037.
|
[30]
|
Y. Zhang, Y. Qian and L. Mei, Discontinuous Galerkin methods for the Stokes equations with nonlinear damping term on general meshes, Comput. Math. Appl., 79 (2020), 2258-2275.
doi: 10.1016/j.camwa.2019.10.027.
|
[31]
|
Q. Zhang, H Xie, R. Zhang and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem, J. Sci. Comput., 79 (2019), 914-934.
doi: 10.1007/s10915-018-0877-5.
|