\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak Galerkin method for the Stokes equations with damping

  • * Corresponding author: Qilong Zhai

    * Corresponding author: Qilong Zhai

The research is supported by China Natural National Science Foundation(12001232, 11901015)

Abstract Full Text(HTML) Figure(2) / Table(4) Related Papers Cited by
  • In this paper, we introduce the weak Galerkin (WG) finite element method for the Stokes equations with damping. We establish the WG numerical scheme on general meshes and prove the well-posedness of the scheme. Optimal error estimates for the velocity and pressure are derived. Furthermore, in order to accelerate the WG algorithm, we present a two-level method and give the corresponding error estimates. Finally, some numerical examples are reported to validate the theoretical analysis.

    Mathematics Subject Classification: Primary, 65N30, 65N15, 65N12; Secondary, 35B45, 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Left panel: The vectorgraph of velocity; Right panel: The streamlines of velocity

    Figure 2.  Left panel: The vectorgraph of velocity; Right panel: The streamlines of velocity

    Table 1.  The errors and the order of convergence by one-level method, for $ (7.1) $

    h $ {|\!|\!|} Q_h \boldsymbol{u}- \boldsymbol{u}_{h} {|\!|\!|} $ order $ \|Q_0 {{\mathbf{u}}}- {{\mathbf{u}}}_0\|_0 $ order $ \|Q_h p-p_{h}\|_0 $ order
    $ \frac{1}{16} $ 5.3818$ E- $01 - 1.8464$ E- $02 - 1.3715$ E- $01 -
    $ \frac{1}{25} $ 3.4671$ E- $01 0.99 7.6837$ E- $03 1.96 6.5631$ E- $02 1.65
    $ \frac{1}{64} $ 1.3613$ E- $01 0.99 1.1871$ E- $03 1.99 1.2856$ E- $02 1.73
    $ \frac{1}{81} $ 1.0761$ E- $01 1.0 7.4195$ E- $04 2.0 8.4724$ E- $03 1.77
     | Show Table
    DownLoad: CSV

    Table 2.  The errors and the order of convergence by two-level method, for $ (7.1) $

    (H, h) $ {|\!|\!|} Q_h \boldsymbol{u}- \boldsymbol{u}_{h} {|\!|\!|} $ order $ \|Q_0 {{\mathbf{u}}}- {{\mathbf{u}}}_0\|_0 $ order $ \|Q_h p-p_{h}\|_0 $ order
    ($ \frac14 $, $ \frac{1}{16} $) 5.4020$ E- $01 - 1.8559$ E- $02 - 1.2727$ E- $01 -
    ($ \frac15 $, $ \frac{1}{25}) $ 3.4732$ E- $01 0.99 7.7109$ E- $03 1.97 6.1089$ E- $02 1.64
    ($ \frac{1}{8} $, $ \frac{1}{64}) $ 1.3618$ E- $01 1.0 1.1916$ E- $03 1.99 1.2175$ E- $02 1.72
    ($ \frac{1}{9} $, $ \frac{1}{81}) $ 1.0763$ E- $01 1.0 7.4504$ E- $04 1.99 8.0646$ E- $03 1.75
     | Show Table
    DownLoad: CSV

    Table 3.  The comparison of the CPU times (unit:s) for the one-level and two-level methods for $ (7.1) $

    h one-level two level
    ($ \frac14 $, $ \frac{1}{16} $) 6.921 9.352
    ($ \frac{1}{5} $, $ \frac{1}{25}) $ 19.923 24.005
    ($ \frac{1}{8} $, $ \frac{1}{64}) $ 319.522 277.700
    ($ \frac{1}{9} $, $ \frac{1}{81}) $ 974.475 691.726
     | Show Table
    DownLoad: CSV

    Table 4.  The comparison of the CPU times (unit:s) for the one-level and two-level methods with different pairs of parameters, for $ (7.2) $

    one-level two level
    $ \alpha=1 $, $ r=3 $, $ \mu=1 $ 308.325 278.230
    $ \alpha=5 $, $ r=3 $, $ \mu=1 $ 427.230 276.781
    $ \alpha=10 $, $ r=3 $, $ \mu=1 $ 425.516 277.020
    $ \alpha=1 $, $ r=4 $, $ \mu=1 $ 314.077 276.544
    $ \alpha=1 $, $ r=5 $, $ \mu=1 $ 371.219 277.493
    $ \alpha=1 $, $ r=3 $, $ \mu=0.1 $ 476.156 285.622
     | Show Table
    DownLoad: CSV
  • [1] S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly, 87 (1980), 359-370.  doi: 10.1080/00029890.1980.11995034.
    [2] D. ArnoldF. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), 337-344.  doi: 10.1007/BF02576171.
    [3] S. AntontsevJ. $D\acute{l}az$ and H. de Oliveira, Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem, J. Math. Fluid Mech., 6 (2004), 439-461.  doi: 10.1007/s00021-004-0106-x.
    [4] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.
    [5] D. BreschB. Desjardins and C. Lin, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Partial Differential Equations, 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.
    [6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Francaise Automat Informat. Recherche Op$\acute{e}$rationnelle S$\acute{e}$r. Rouge, 8 (1974), 129–151.
    [7] L. Chen and Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49 (2011), 383-401.  doi: 10.1007/s10915-011-9469-3.
    [8] W. ChenF. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36 (2016), 897-921.  doi: 10.1093/imanum/drv012.
    [9] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.  doi: 10.1006/jdeq.1994.1051.
    [10] X. HuL. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362 (2019), 614-625.  doi: 10.1016/j.cam.2018.08.022.
    [11] D. Liu and K. Li, Finite element analysis of the Stokes equations with damping, Math. Numer. Sin., 32 (2010), 433-448. 
    [12] M. LiD. Shi and Y. Dai, Stabilized low order finite elements for Stokes equations with damping, J. Math. Anal. Appl., 435 (2016), 646-660.  doi: 10.1016/j.jmaa.2015.10.040.
    [13] M. LiD. ShiZ. Li and H. Chen, Two-level mixed finite element methods for the Navier-Stokes equations with damping, J. Math. Anal. Appl., 470 (2019), 292-307.  doi: 10.1016/j.jmaa.2018.10.002.
    [14] L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.
    [15] M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM. J. Numer. Anal., 45 (2007), 1801-1813.  doi: 10.1137/050637820.
    [16] H. PengQ. ZhaiR. Zhang and S. Zhang, Weak Galerkin and continuous Galerkin coupled finite element methods for the Stokes-Darcy interface problem, Commun. Comput. Phys., 28 (2020), 1147-1175.  doi: 10.4208/cicp.oa-2019-0122.
    [17] D. Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp., 79 (2010), 1303-1330.  doi: 10.1090/S0025-5718-10-02333-1.
    [18] Y. Shang and J. Qin, A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 300 (2016), 182-198.  doi: 10.1016/j.cma.2015.11.013.
    [19] D. Shi and Z. Yu, Superclose and superconvergence of finite element discretizations for the Stokes equations with damping, Appl. Math., 219 (2013), 7693-7698.  doi: 10.1016/j.amc.2013.01.057.
    [20] C. WangJ. WangR. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.  doi: 10.1016/j.cam.2015.12.015.
    [21] J. Wang and X. Ye, A weak Galerkin nite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.
    [22] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.
    [23] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.
    [24] R. Wang and R. Zhang, A weak Galerkin finite element method for the linear elasticity problem in mixed form, J. Comput. Math., 36 (2018), 469-491.  doi: 10.4208/jcm.1701-m2016-0733.
    [25] X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.
    [26] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.
    [27] Q. ZhaiH. XieR Zhang and Z Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 26 (2019), 160-191.  doi: 10.4208/cicp.OA-2018-0201.
    [28] T. Zhang and T. Lin, A stable weak Galerkin finite element method for Stokes problem, J. Comput. Appl. Math., 333 (2018), 235-246.  doi: 10.1016/j.cam.2017.10.042.
    [29] T. Zhang and T. Lin, An analysis of a weak Galerkin finite element method for stationary Navier-Stokes problems, J. Comput. Appl. Math., 362 (2019), 484-497.  doi: 10.1016/j.cam.2018.07.037.
    [30] Y. ZhangY. Qian and L. Mei, Discontinuous Galerkin methods for the Stokes equations with nonlinear damping term on general meshes, Comput. Math. Appl., 79 (2020), 2258-2275.  doi: 10.1016/j.camwa.2019.10.027.
    [31] Q. ZhangH XieR. Zhang and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem, J. Sci. Comput., 79 (2019), 914-934.  doi: 10.1007/s10915-018-0877-5.
  • 加载中

Figures(2)

Tables(4)

SHARE

Article Metrics

HTML views(705) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return