• PDF
• Cite
• Share
Article Contents  Article Contents

# A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents

• * Corresponding author: Binlin Zhang
• In this paper, we study the following Kirchhoff-type fractional Schrödinger system with critical exponent in $\mathbb{R}^N$:

$\begin{equation*} \begin{cases} \left(a_{1}+b_{1}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2dx\right)(-\Delta)^{s}u+u = \mu_1|u|^{2^*_s-2}u +\frac{\alpha\gamma}{2^*_s}|u|^{\alpha-2}u|v|^{\beta}+k|u|^{p-1}u,\\ \left(a_{2}+b_{2}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}v|^2dx\right)(-\Delta)^{s}v+v = \mu_2|v|^{2^*_s-2}v+ \frac{\beta\gamma}{2^*_s}|u|^{\alpha}|v|^{\beta-2}v+k|v|^{p-1}v,\\ \end{cases} \end{equation*}$

where $(-\Delta)^{s}$ is the fractional Laplacian, $0<s<1$, $N>2s,$ $2_{s}^{\ast} = 2N/(N-2s)$ is the fractional critical Sobolev exponent, $\mu_{1},\mu_{2},\gamma, k>0$, $\alpha+\beta = 2_{s}^{\ast},\ 1<p<2_{s}^{\ast}-1$, $a_{i},b_{i}\geq 0,$ with $a_{i}+b_{i}>0,\ \ i = 1,2$. By using appropriate transformation, we first get its equivalent system which may be easier to solve:

$\begin{equation*} \begin{cases} (-\Delta)^{s}u+u = \mu_1|u|^{2^*_s-2}u+\frac{\alpha\gamma}{2^*_s}|u|^{\alpha-2}u|v|^{\beta}+k|u|^{p-1}u, \ \ x\in \mathbb{R}^N, \\ (-\Delta)^{s}v+v = \mu_2|v|^{2^*_s-2}v+\frac{\beta\gamma}{2^*_s}|u|^{\alpha}|v|^{\beta-2}v+k|v|^{p-1}v,\ \ x\in \mathbb{R}^N,\\ \lambda_{1}^{s}-a_{1}-b_{1}\lambda_{1}^{\frac{N-2s}{2}}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2dx = 0, \ \ \lambda_{1}\in \mathbb{R}^+,\\ \lambda_{2}^{s}-a_{2}-b_{2}\lambda_{2}^{\frac{N-2s}{2}}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}v|^2dx = 0, \ \ \lambda_{2}\in \mathbb{R}^+. \end{cases} \end{equation*}$

Then, by using the mountain pass theorem, together with some classical arguments from Brézis and Nirenberg, we obtain the existence of solutions for the new system under suitable conditions. Finally, based on the equivalence of two systems, we get the existence of solutions for the original system. Our results give improvement and complement of some recent theorems in several directions.

Mathematics Subject Classification: Primary: 35J20, 35B33, 58E05.

 Citation: • • ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint