[1]
|
N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.
doi: 10.3934/mbe.2016012.
|
[2]
|
J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 10 (1968), 707-723.
doi: 10.1002/bit.260100602.
|
[3]
|
B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete and Continuous Dynamical Systems–B, 25 (2020), 2093-2120.
doi: 10.3934/dcdsb.2019203.
|
[4]
|
G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.
doi: 10.1137/0145006.
|
[5]
|
M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal inhibitor, Discrete and Continuous Dynamical Systems–B, 26 (2021), 1129-1148.
doi: 10.3934/dcdsb.2020156.
|
[6]
|
M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004.
|
[7]
|
R. Fekih-Salem, J. Harmand, C. Lobry, A. Rapaport and T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, 397 (2013), 292-306.
doi: 10.1016/j.jmaa.2012.07.055.
|
[8]
|
P. Fergola, M. Cerasuolo, A. Pollio, G. Pinto and M. Della Grecac., Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecological Modelling, 208 (2007), 205-214.
doi: 10.1016/j.ecolmodel.2007.05.024.
|
[9]
|
P. Fergola, J. Li and Z. Ma, On the dynamical behavior of some algal allelopathic competitions in chemostat-like environment, Ricerche di Matematica, 60 (2011), 313-332.
doi: 10.1007/s11587-011-0108-y.
|
[10]
|
H. Fgaier, M. Kalmokoff, T. Ells and H. J. Eberl, An allelopathy based model for the Listeria overgrowth phenomenon, Mathematical Biosciences, 247 (2014), 13-26.
doi: 10.1016/j.mbs.2013.10.008.
|
[11]
|
G. F. Gause, The Struggle for Existence, Williams and Wilkins, Baltimore, (1934).
|
[12]
|
B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, Journal of Biological Dynamics, 2 (2008), 1-13.
doi: 10.1080/17513750801942537.
|
[13]
|
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274.
|
[14]
|
G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292.
|
[15]
|
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Vol. 1, ISTE, London, John Wiley and Sons, Inc. Hoboken, NJ, 2017.
|
[16]
|
J. Heßeler, J. K. Schmidt, U. Reichl and D. Flockerzi, Coexistence in the chemostat as a result of metabolic by-products, Journal of Mathematical Biology, 53 (2006), 556-584.
doi: 10.1007/s00285-006-0012-3.
|
[17]
|
S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030.
|
[18]
|
S. B. Hsu, T. K. Luo and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, Journal of Mathematical Biology, 34 (1995), 225-238.
doi: 10.1007/BF00178774.
|
[19]
|
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, Japan Journal of Industrial and Applied Mathematics, 15 (1998), 471-490.
doi: 10.1007/BF03167323.
|
[20]
|
Y. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 3$^rd$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7.
|
[21]
|
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.
doi: 10.1016/j.mbs.2003.07.004.
|
[22]
|
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.
doi: 10.1016/S0022-5193(86)80226-0.
|
[23]
|
C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource, Comptes Rendus Biologies, 329 (2006), 40-46.
doi: 10.1016/j.crvi.2005.10.004.
|
[24]
|
I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy, Applied Mathematics and Computation, 215 (2009), 573-582.
doi: 10.1016/j.amc.2009.05.033.
|
[25]
|
S. Pavlou, Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.
doi: 10.1016/S0168-1656(99)00011-5.
|
[26]
|
T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.
doi: 10.3934/mbe.2011.8.827.
|
[27]
|
M. Scheffer, S. Rinaldi, J. Huisman and F. J. Weissing, Why plankton communities have no equilibrium: Solutions to the paradox, Hydrobiologia, 491 (2003), 9-18.
doi: 10.1023/A:1024404804748.
|
[28]
|
H. L. Smith and B. Tang, Competition in the gradostat: The role of the communication rate, Journal of Mathematical Biology, 27 (1989), 139-165.
doi: 10.1007/BF00276100.
|
[29]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[30]
|
S. Sobieszek, G. S. K. Wolkowicz and M. J. Wade, Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Mathematical Biosciences and Engineering, 17 (2020), 7045-7073.
doi: 10.3934/mbe.2020363.
|
[31]
|
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry, Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002.
|
[32]
|
M. Weedermann, G. Seo and G. Wolkowicz, Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition, Journal of Biological Dynamics, 7 (2013), 59-85.
doi: 10.1080/17513758.2012.755573.
|