In this paper, we consider the following chemotaxis-consumption model with porous medium diffusion and singular sensitivity
$ \begin{align*} \left\{ \begin{aligned} &u_{t} = \Delta u^{m}-\chi \mathrm{div}(\frac{u}{v}\nabla v)+\mu u(1-u), \\ &v_{t} = \Delta v-u^{r}v, \end{aligned}\right. \end{align*} $
in a bounded domain $ \Omega\subset\mathbb R^N $ ($ N\ge 2 $) with zero-flux boundary conditions. It is shown that if $ r<\frac{4}{N+2} $, for arbitrary case of fast diffusion ($ m\le 1 $) and slow diffusion $ (m>1) $, this problem admits a locally bounded global weak solution. It is worth mentioning that there are no smallness restrictions on the initial datum and chemotactic coefficient.
Citation: |
[1] |
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045.![]() ![]() ![]() |
[2] |
K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Analysis, 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017.![]() ![]() ![]() |
[3] |
Q. Hou, C. Liu, Y. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: One-dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091.
doi: 10.1137/17M112748X.![]() ![]() ![]() |
[4] |
Q. Hou and Z. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl. (9), 130 (2019), 251-287.
doi: 10.1016/j.matpur.2019.01.008.![]() ![]() ![]() |
[5] |
C. Jin, Boundedness and global solvability to a chemotaxis model with nonlinear diffusion, J. Differential Equations, 263 (2017), 5759-5772.
doi: 10.1016/j.jde.2017.06.034.![]() ![]() ![]() |
[6] |
C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1675-1688.
doi: 10.3934/dcdsb.2018069.![]() ![]() ![]() |
[7] |
E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
[8] |
J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.
doi: 10.1016/j.jde.2016.12.007.![]() ![]() ![]() |
[9] |
E. Lankeit and J. Lankeit, On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms, Nonlinearity, 32 (2019), 1569-1596.
doi: 10.1088/1361-6544/aaf8c0.![]() ![]() ![]() |
[10] |
E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. Real World Appl., 46 (2019), 421-445.
doi: 10.1016/j.nonrwa.2018.09.012.![]() ![]() ![]() |
[11] |
J. Li, T. Li and Z. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.
doi: 10.1142/S0218202514500389.![]() ![]() ![]() |
[12] |
J. Lankeit and G. Viglialoro, Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity, Acta Appl. Math., 167 (2020), 75-97.
doi: 10.1007/s10440-019-00269-x.![]() ![]() ![]() |
[13] |
H. Li and K. Zhao, Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302-308.
doi: 10.1016/j.jde.2014.09.014.![]() ![]() ![]() |
[14] |
T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.
doi: 10.1007/BF00160334.![]() ![]() ![]() |
[15] |
L. Rebholz, D. Wang, Z. Wang, C. Zerfas and K. Zhao, Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 3789-3838.
doi: 10.3934/dcds.2019154.![]() ![]() ![]() |
[16] |
Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180.
![]() ![]() |
[17] |
Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin, Dyn. Syst. Ser. B, 18 (2013), 821-845.
doi: 10.3934/dcdsb.2013.18.821.![]() ![]() ![]() |
[18] |
G. Viglialoro, Global existence in a two-dimensional chemotaxis-consumption model with weakly singular sensitivity, Applied Mathematics Letters, 91 (2019), 121-127.
doi: 10.1016/j.aml.2018.12.012.![]() ![]() ![]() |
[19] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[20] |
M. Winkler, Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption, J. Differential Equations, 264 (2018), 2310-2350.
doi: 10.1016/j.jde.2017.10.029.![]() ![]() ![]() |
[21] |
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Mathematical Methods in the Applied Sciences, 34 (2011), 176-190.
doi: 10.1002/mma.1346.![]() ![]() ![]() |
[22] |
Z. Wang, Mathematics of traveling waves in chemotaxis-review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601-641.
doi: 10.3934/dcdsb.2013.18.601.![]() ![]() ![]() |
[23] |
J. Yan and Y. Li, Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity, Nonlinear Analysis, 176 (2018), 288-302.
doi: 10.1016/j.na.2018.06.016.![]() ![]() ![]() |
[24] |
X. Zhao and S. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68 (2017), Paper No. 2, 13pp.
doi: 10.1007/s00033-016-0749-5.![]() ![]() ![]() |