In infinite $ m $-dimensional lattices, we obtain the existence of two nontrivial solutions for a class of non-periodic Schrödinger lattice systems with perturbed terms, where the potentials are coercive and the nonlinearities are asymptotically linear at infinity. In addition, examples are given to illustrate our results.
Citation: |
[1] |
G. Chen, S. Ma and Z-Q. Wang, Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities, J. Differential Equations, 261 (2016) 3493–3518.
doi: 10.1016/j.jde.2016.05.030.![]() ![]() ![]() |
[2] |
G. Chen and M. Schechter, Non-periodic discrete Schrödinger equations: Ground state solutions, Z. Angew. Math. Phys., 67 (2016), 72, 15 pp.
doi: 10.1007/s00033-016-0665-8.![]() ![]() ![]() |
[3] |
G. Chen and S. Ma, Perturbed Schrödinger lattice systems: Existence of homoclinic solutions, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1083-1096.
doi: 10.1017/prm.2018.106.![]() ![]() ![]() |
[4] |
G. Chen and M. Schechter, Non-periodic Schrödinger lattice systems with perturbed and asymptotically linear terms: Negative energy solutions, Appl. Math. Lett., 93 (2019), 34-39.
doi: 10.1016/j.aml.2019.01.033.![]() ![]() ![]() |
[5] |
G. Chen and M. Schechter, Multiple solutions for non-periodic Schrödinger lattice systems with perturbation and super-linear terms, Z. Angew. Math. Phys., 70 (2019), 152, 9 pp.
doi: 10.1007/s00033-019-1199-7.![]() ![]() ![]() |
[6] |
G. Chen and M. Schechter, Multiple homoclinic solutions for discrete Schrödinger equations with perturbed and sublinear terms, Z. Angew. Math. Phys., 72 (2021), 63.
doi: 10.1007/s00033-021-01503-z.![]() ![]() ![]() |
[7] |
D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 424 (2003), 817-823.
doi: 10.1038/nature01936.![]() ![]() |
[8] |
I. Ekeland, Non-convex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.
doi: 10.1090/S0273-0979-1979-14595-6.![]() ![]() ![]() |
[9] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3.![]() ![]() ![]() |
[10] |
L. Erbe, B. Jia and Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 9 (2019), 271-294.
doi: 10.11948/2019.271.![]() ![]() ![]() |
[11] |
G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), 175-196.
doi: 10.1103/PhysRevLett.87.165501.![]() ![]() |
[12] |
G. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1723-1747.
doi: 10.3934/cpaa.2018082.![]() ![]() ![]() |
[13] |
G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $\phi$-Laplacian equations with mixed nonlinearities, Appl. Math. Lett., 64 (2017), 15-20.
doi: 10.1016/j.aml.2016.08.001.![]() ![]() ![]() |
[14] |
G. Lin, Z. Zhou and J. Yu, Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials, J. Dyn. Differ. Equ., 32 (2020), 527-555.
doi: 10.1007/s10884-019-09743-4.![]() ![]() ![]() |
[15] |
R. Livi, R. Franzosi and G.-L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), 3633-3646.
doi: 10.1103/PhysRevLett.97.060401.![]() ![]() |
[16] |
A. Pankov, Gap solitons in periodic discrete nonlinear equations, Nonlinearity, 19 (2006), 27-40.
doi: 10.1088/0951-7715/19/1/002.![]() ![]() ![]() |
[17] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations. Ⅱ. A generalized Nehari manifold approach, Discrete Contin. Dyn. Syst., 19 (2007), 419-430.
doi: 10.3934/dcds.2007.19.419.![]() ![]() ![]() |
[18] |
A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219-3236.
doi: 10.1098/rspa.2008.0255.![]() ![]() ![]() |
[19] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 371 (2010), 254-265.
doi: 10.1016/j.jmaa.2010.05.041.![]() ![]() ![]() |
[20] |
A. Pankov and G. Zhang, Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity, J. Math. Sci., 177 (2011), 71-82.
doi: 10.1007/s10958-011-0448-x.![]() ![]() ![]() |
[21] |
A. Pankov, Standing waves for discrete nonlinear Schrödinger equations: Sign-changing nonlinearities, Appl. Anal., 92 (2013), 308-317.
doi: 10.1080/00036811.2011.609987.![]() ![]() ![]() |
[22] |
M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc., (2) 44 (1991), 491-502.
doi: 10.1112/jlms/s2-44.3.491.![]() ![]() ![]() |
[23] |
H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.
doi: 10.1016/j.jmaa.2009.07.026.![]() ![]() ![]() |
[24] |
M. Yang, W. Chen and Y. Ding, Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0, Acta Appl. Math., 110 (2010), 1475-1488.
doi: 10.1007/s10440-009-9521-6.![]() ![]() ![]() |
[25] |
G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5 (2008), 38-49.
![]() ![]() |
[26] |
G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 50 (2009), 013505.
doi: 10.1063/1.3036182.![]() ![]() ![]() |
[27] |
G. Zhang and A. Pankov, Standing wave solutions of the disrete non-linear Schrödinger equatins with unbounded potentials, Ⅱ, Appl. Anal., 89 (2010), 1541-1557.
doi: 10.1080/00036810902942234.![]() ![]() ![]() |
[28] |
Z. Zhou, J. Yu and Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727-1740.
doi: 10.1088/0951-7715/23/7/011.![]() ![]() ![]() |
[29] |
Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.
doi: 10.1016/j.jde.2010.03.010.![]() ![]() ![]() |
[30] |
Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93.
doi: 10.1007/s11425-010-4101-9.![]() ![]() ![]() |
[31] |
Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790.
doi: 10.1007/s11425-014-4883-2.![]() ![]() ![]() |