The expression of individual genes into functional protein molecules is a noisy dynamical process. Here we model the protein concentration as a jump-drift process which combines discrete stochastic production bursts (jumps) with continuous deterministic decay (drift). We allow the drift rate, the jump rate, and the jump size to depend on the protein level to implement feedback in protein stability, burst frequency, and burst size. We specifically focus on positive feedback in burst size, while allowing for arbitrary autoregulation in burst frequency and protein stability. Two versions of feedback in burst size are thereby considered: in the first, newly produced molecules instantly participate in feedback, even within the same burst; in the second, within-burst regulation does not occur due to the so-called infinitesimal delay. Without infinitesimal delay, the model is explicitly solvable; with its inclusion, an exact distribution to the model is unavailable, but we are able to construct a WKB approximation that applies in the asymptotic regime of small but frequent bursts. Comparing the asymptotic behaviour of the two model versions, we report that they yield the same WKB quasi-potential but a different exponential prefactor. We illustrate the difference on the case of a bimodal protein distribution sustained by a sigmoid feedback in burst size: we show that the omission of the infinitesimal delay overestimates the weight of the upper mode of the protein distribution. The analytic results are supported by kinetic Monte-Carlo simulations.
Citation: |
Figure 1. Upper Left: The model includes bursty protein production and continuous protein decay, and allows for feedback in burst frequency, burst size, and protein stability, as quantified by functions $ \alpha(x) $, $ \beta(x) $, and $ \gamma(x) $, respectively. Bottom Left: Bursts lead to an instantaneous increases in protein concentration; between bursts protein concentration decays continuously. Bottom Right: In the deterministic limit $ \varepsilon\to0 $, the concentration changes per unit time by the difference of the production rate $ \alpha(x)\beta(x) $ (solid line) and the decay rate $ \gamma(x) $ (dotted line). The intersections of the two are the fixed points (FPTs) of the deterministic model. Upper Right: The distribution potential (16) is a Lyapunov function of the deterministic model: it possesses minima/maxima where the deterministic model exhibits stable/unstable points. The depicted example pertains to feedback in burst size, with $ \gamma(x) = x $, $ \alpha(x)\equiv 1 $, $ \beta(x) = 0.4 + 1.6x^4/(1 + x^4) $
Figure 2. Left: For small values of the noise parameter $ \varepsilon $, the sample paths of the stochastic model (coloured curves) are close to the solutions of the deterministic model (black curves). The stable/unstable fixed points of the deterministic model (14) are shown as dashed/dotted horizontal lines. Right: Transitions between the basins of attractions of the stable steady states occur on an extremely slow timescale. Parameter values: Feedback is in burst size, with $ \gamma(x) = x $, $ \alpha(x)\equiv 1 $, $ \beta(x) = 0.4 + 1.6x^4/(1 + x^4) $. The noise parameter is varied in the left panel and fixed to $ \varepsilon = 0.05 $ in the right panel
Figure 3. Upper Panels: Simulation-based time-dependent distributions (coloured curves) approach, as simulation time increases, the WKB stationary distribution (dashed black curve). This is markedly different from the exact stationary distribution of the model without infinitesimal delay (dotted black curve). The initial condition is $ x_0 = 0 $ (left panel) and $ x_0 = 3 $ (right panel). Bottom Panels: Large-time simulation-based distributions (solid curve) are compared to the WKB approximation (dashed curve). Parameter values: Feedback is in burst size, with $ \gamma(x) = x $, $ \alpha(x)\equiv 1 $, $ \beta(x) = 0.4 + 1.6x^4/(1 + x^4) $, except the bottom right panel, where $ \beta(x) = 0.4 + 2.6x^4/(1 + x^4) $. The noise parameter is fixed to $ \varepsilon = 0.05 $ in the upper panels; in the bottom panels, it assumes values that are specified in the inset
[1] |
A. A. Alonso, R. Bermejo, M. Pájaro and C. Vázquez, Numerical analysis of a method for a partial integro-differential equation model in regulatory gene networks, Math. Models Methods Appl. Sci., 28 (2018), 2069-2095.
doi: 10.1142/S0218202518500495.![]() ![]() ![]() |
[2] |
A. Andreychenko, L. Bortolussi, R. Grima, P. Thomas and V. Wolf, Distribution approximations for the chemical master equation: Comparison of the method of moments and the system size expansion, in Modeling Cellular Systems, Springer, 2017, 39-66.
![]() ![]() |
[3] |
M. Assaf and B. Meerson, WKB theory of large deviations in stochastic populations, J. Phys. A: Math. Theor., 50 (2017), 263001.
doi: 10.1088/1751-8121/aa669a.![]() ![]() ![]() |
[4] |
P. Bokes, J. R. King, A. T. A. Wood and M. Loose, Multiscale stochastic modelling of gene expression, J. Math. Biol., 65 (2012), 493-520.
doi: 10.1007/s00285-011-0468-7.![]() ![]() ![]() |
[5] |
P. Bokes, J. R. King, A. T. A. Wood and M. Loose, Transcriptional bursting diversifies the behaviour of a toggle switch: Hybrid simulation of stochastic gene expression, B. Math. Biol., 75 (2013), 351-371.
doi: 10.1007/s11538-013-9811-z.![]() ![]() ![]() |
[6] |
P. Bokes, Y. T. Lin and A. Singh, High cooperativity in negative feedback can amplify noisy gene expression, B. Math. Biol., 80 (2018), 1871-1899.
doi: 10.1007/s11538-018-0438-y.![]() ![]() ![]() |
[7] |
P. Bokes, Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay, Discrete Cont. Dyn. Syst. Ser. B, 24 (2019), 5539-5552.
doi: 10.3934/dcdsb.2019070.![]() ![]() ![]() |
[8] |
P. Bokes, A. Borri, P. Palumbo and A. Singh, Mixture distributions in a stochastic gene expression model with delayed feedback: A WKB approximation approach, J. Math. Biol., 81 (2020), 343-367.
doi: 10.1007/s00285-020-01512-y.![]() ![]() ![]() |
[9] |
P. Bokes, J. R. King, A. T. A. Wood and M. Loose, Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression, J. Math. Biol., 64 (2012), 829-854.
doi: 10.1007/s00285-011-0433-5.![]() ![]() ![]() |
[10] |
P. Bokes and A. Singh, Protein copy number distributions for a self-regulating gene in the presence of decoy binding sites, PLoS ONE, 10 (2015), e0120555.
doi: 10.1371/journal.pone.0120555.![]() ![]() |
[11] |
P. Bokes and A. Singh, Gene expression noise is affected differentially by feedback in burst frequency and burst size, J. Math. Biol., 74 (2017), 1483-1509.
doi: 10.1007/s00285-016-1059-4.![]() ![]() ![]() |
[12] |
P. Bokes and A. Singh, Controlling noisy expression through auto regulation of burst frequency and protein stability, in Češka M., Paoletti N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science, vol 11705, Springer, Cham, 2019.
doi: 10.1007/978-3-030-28042-0_6.![]() ![]() |
[13] |
P. C. Bressloff and J. M. Newby, Metastability in a stochastic neural network modeled as a velocity jump Markov process, SIAM J. Appl. Dyn. Syst., 12 (2013), 1394-1435.
doi: 10.1137/120898978.![]() ![]() ![]() |
[14] |
J. A. Cañizo, J. A. Carrillo and M. Pájaro, Exponential equilibration of genetic circuits using entropy methods, J. Math. Biol., 78 (2019), 373-411.
doi: 10.1007/s00285-018-1277-z.![]() ![]() ![]() |
[15] |
D. R. Cox and D. Oakes, Analysis of Survival Data, Chapman & Hall/CRC, 1984.
![]() ![]() |
[16] |
A. Crudu, A. Debussche, A. Muller and O. Radulescu, Convergence of stochastic gene networks to hybrid piecewise deterministic processes, Ann. Appl. Probab., 22 (2012), 1822-1859.
doi: 10.1214/11-AAP814.![]() ![]() ![]() |
[17] |
J. Dattani and M. Barahona, Stochastic models of gene transcription with upstream drives: exact solution and sample path characterization, J. Roy. Soc. Interface, 14 (2017), 20160833.
doi: 10.1098/rsif.2016.0833.![]() ![]() |
[18] |
M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.
doi: 10.1126/science.1070919.![]() ![]() |
[19] |
N. Friedman, L. Cai and X. S. Xie, Linking stochastic dynamics to population distribution: an analytical framework of gene expression, Phys. Rev. Lett., 97 (2006), 168302.
doi: 10.1103/PhysRevLett.97.168302.![]() ![]() |
[20] |
H. Ge, H. Qian and X. S. Xie, Stochastic phenotype transition of a single cell in an intermediate region of gene state switching, Phys. Rev. Lett., 114 (2015), 078101.
doi: 10.1103/PhysRevLett.114.078101.![]() ![]() |
[21] |
L. Ham, R. D. Brackston and M. P. Stumpf, Extrinsic noise and heavy-tailed laws in gene expression, Phys. Rev. Lett., 124 (2020), 108101.
doi: 10.1103/PhysRevLett.124.108101.![]() ![]() |
[22] |
M. A. Hernandez, B. Patel, F. Hey, S. Giblett, H. Davis and C. Pritchard, Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor, Cell. Signal., 28 (2016), 561-571.
doi: 10.1016/j.cellsig.2016.02.009.![]() ![]() |
[23] |
E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991.
doi: 10.1017/CBO9781139172189.![]() ![]() ![]() |
[24] |
R. Hinch and S. J. Chapman, Exponentially slow transitions on a Markov chain: The frequency of calcium sparks, Eur. J. Appl. Math., 16 (2005), 427-446.
doi: 10.1017/S0956792505006194.![]() ![]() ![]() |
[25] |
J. Holehouse, Z. Cao and R. Grima, Stochastic modeling of auto-regulatory genetic feedback loops: A review and comparative study, Biophys. J.
![]() |
[26] |
P. G. Hufton, Y. T. Lin, T. Galla and A. J. McKane, Intrinsic noise in systems with switching environments, Phys. Rev. E, 93 (2016), 052119.
doi: 10.1103/PhysRevE.93.052119.![]() ![]() |
[27] |
G. C. P. Innocentini, M. Forger, O. Radulescu and F. Antoneli, Protein synthesis driven by dynamical stochastic transcription, B. Math. Biol., 78 (2016), 110-131.
doi: 10.1007/s11538-015-0131-3.![]() ![]() ![]() |
[28] |
J. Jȩdrak, M. Kwiatkowski and A. Ochab-Marcinek, Exactly solvable model of gene expression in a proliferating bacterial cell population with stochastic protein bursts and protein partitioning, Phys. Rev. E, 99 (2019), 042416.
doi: 10.1103/PhysRevE.99.042416.![]() ![]() |
[29] |
J. Jȩdrak and A. Ochab-Marcinek, Influence of gene copy number on self-regulated gene expression, J. Theor. Biol., 408 (2016), 222-236.
doi: 10.1016/j.jtbi.2016.08.018.![]() ![]() ![]() |
[30] |
J. Jȩdrak and A. Ochab-Marcinek, Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound poisson process, Phys. Rev. E, 94 (2016), 032401.
doi: 10.1103/PhysRevE.94.032401.![]() ![]() |
[31] |
C. Jia and R. Grima, Dynamical phase diagram of an auto-regulating gene in fast switching conditions, J. Chem. Phys., 152 (2020), 174110.
doi: 10.1063/5.0007221.![]() ![]() |
[32] |
A. Kozdeba and A. Tomski, Application of the goodwin model to autoregulatory feedback for stochastic gene expression, Math. Biosci., 327 (2020), 108413.
doi: 10.1016/j.mbs.2020.108413.![]() ![]() ![]() |
[33] |
P. Kurasov, A. Lück, D. Mugnolo and V. Wolf, Stochastic hybrid models of gene regulatory networks - a PDE approach, Math. Biosci., 305 (2018), 170-177.
doi: 10.1016/j.mbs.2018.09.009.![]() ![]() ![]() |
[34] |
D. R. Larson, R. H. Singer and D. Zenklusen, A single molecule view of gene expression, Trends Cell Biol., 19 (2009), 630-637.
doi: 10.1016/j.tcb.2009.08.008.![]() ![]() |
[35] |
G.-W. Li and X. S. Xie, Central dogma at the single-molecule level in living cells, Nature, 475 (2011), 308-315.
doi: 10.1038/nature10315.![]() ![]() |
[36] |
Y. T. Lin and C. R. Doering, Gene expression dynamics with stochastic bursts: Construction and exact results for a coarse-grained model, Phys. Rev. E, 93 (2016), 022409.
doi: 10.1103/physreve.93.022409.![]() ![]() ![]() |
[37] |
Y. T. Lin and T. Galla, Bursting noise in gene expression dynamics: Linking microscopic and mesoscopic models, J. Roy. Soc. Interface, 13 (2016), 20150772.
doi: 10.1098/rsif.2015.0772.![]() ![]() |
[38] |
T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A. R. Brasier and M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol., 238 (2006), 348-67.
doi: 10.1016/j.jtbi.2005.05.032.![]() ![]() ![]() |
[39] |
M. Masujima, Applied Mathematical Methods in Theoretical Physics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
doi: 10.1002/9783527627745.![]() ![]() ![]() |
[40] |
A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981.
![]() ![]() |
[41] |
J. Newby and J. Chapman, Metastable behavior in Markov processes with internal states, J. Math. Biol., 69 (2014), 941-976.
doi: 10.1007/s00285-013-0723-1.![]() ![]() ![]() |
[42] |
M. Pájaro, A. A. Alonso, I. Otero-Muras and C. Vázquez, Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting, J. Theor. Biol., 421 (2017), 51-70.
doi: 10.1016/j.jtbi.2017.03.017.![]() ![]() ![]() |
[43] |
J. Rodriguez and D. R. Larson, Transcription in living cells: Molecular mechanisms of bursting, Annu. Rev. Biochem., 89 (2020), 189-212.
doi: 10.1146/annurev-biochem-011520-105250.![]() ![]() |
[44] |
M. A. Schikora-Tamarit, C. Toscano-Ochoa, J. D. Espinos, L. Espinar and L. B. Carey, A synthetic gene circuit for measuring autoregulatory feedback control, Integr. Biol., 8 (2016), 546-555.
doi: 10.1039/C5IB00230C.![]() ![]() |
[45] |
L. Schuh, M. Saint-Antoine, E. M. Sanford, B. L. Emert, A. Singh, C. Marr, A. Raj and Y. Goyal, Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states in cancer, Cell Syst., 10 (2020), 363-378.
doi: 10.1016/j.cels.2020.03.004.![]() ![]() |
[46] |
Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical Approach, Springer Science & Business Media, Berlin/Heidelberg, 2009.
![]() |
[47] |
M. Soltani, P. Bokes, Z. Fox and A. Singh, Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins, Phys. Biol., 12 (2015), 055002.
doi: 10.1088/1478-3975/12/5/055002.![]() ![]() |
[48] |
A. Sundqvist and J. Ericsson, Transcription-dependent degradation controls the stability of the srebp family of transcription factors, P. Natl. Acad. Sci. USA., 100 (2003), 13833-13838.
doi: 10.1073/pnas.2335135100.![]() ![]() |
[49] |
D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler and F. Naef, Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474.
doi: 10.1126/science.1198817.![]() ![]() |
[50] |
Z. Vahdat, K. Nienałtowski, Z. Farooq, M. Komorowski and A. Singh, Information processing in unregulated and autoregulated gene expression, in 2020 European Control Conference (ECC), IEEE, 2020,258-263.
doi: 10.23919/ECC51009.2020.9143689.![]() ![]() |
[51] |
N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Lecture Notes in Mathematics, 888. North-Holland Publishing Co., Amsterdam-New York, 1981.
![]() ![]() |
[52] |
B. Xu, H.-W. Kang and A. Jilkine, Comparison of deterministic and stochastic regime in a model for Cdc42 oscillations in fission yeast, B. Math. Biol., 81 (2019), 1268-1302.
doi: 10.1007/s11538-019-00573-5.![]() ![]() ![]() |
[53] |
I. Zabaikina, P. Bokes and A. Singh, Optimal bang-bang feedback for bursty gene expression, in 2020 European Control Conference (ECC), IEEE, 2020, 277-282.
doi: 10.1101/793638.![]() ![]() |
Upper Left: The model includes bursty protein production and continuous protein decay, and allows for feedback in burst frequency, burst size, and protein stability, as quantified by functions
Left: For small values of the noise parameter
Upper Panels: Simulation-based time-dependent distributions (coloured curves) approach, as simulation time increases, the WKB stationary distribution (dashed black curve). This is markedly different from the exact stationary distribution of the model without infinitesimal delay (dotted black curve). The initial condition is